Hierarchical Nanoporous Cu6Sn5/Sn Heterojunction with Accelerated CO2 Protonation for Formate Production

Yifan Zhu , Yijie Wang , Cuiping Li , Fengxia Li , Li Li , Caixia Xu , Weijia Zhou

Transactions of Tianjin University ›› 2025, Vol. 31 ›› Issue (4) : 411 -420.

PDF
Transactions of Tianjin University ›› 2025, Vol. 31 ›› Issue (4) : 411 -420. DOI: 10.1007/s12209-025-00446-0
Research Article
research-article

Hierarchical Nanoporous Cu6Sn5/Sn Heterojunction with Accelerated CO2 Protonation for Formate Production

Author information +
History +
PDF

Abstract

Electrocatalytic conversion of carbon dioxide (CO2) into formate offers a sustainable pathway to mitigate environmental degradation and the energy crisis. Tin (Sn)-based materials are promising electrocatalysts for CO2 reduction to formate; however, their efficiency is limited by weak CO2 adsorption and activation, as well as sluggish reaction kinetics. In this work, we designed an intercrossing nanoporous Cu6Sn5/Sn intermetallic heterojunction via a scalable alloying-etching protocol. The resulting Cu6Sn5/Sn catalyst with abundant interfacial sites exhibited enhanced formate selectivity (60.79%) at − 0.93 V versus the reversible hydrogen electrode (RHE), together with a high partial current density of 12.56 mA/cm2 and stable operation for 16 h. The modulated electronic structure of Cu6Sn5 coupled with the robust interfacial interaction between Sn and Cu6Sn5 synergistically promoted CO2 adsorption and activation, thereby improving CO2 reduction reaction (CO2RR) performance. Electrochemical measurements and in situ infrared spectroscopy confirmed that the dual-phase interfaces facilitate H2O decomposition and the generation of abundant *H intermediates, which in turn accelerate the protonation of CO2 to formate. This work highlights a scalable strategy for constructing intermetallic heterojunction catalysts that combine facile synthesis, reproducibility, and superior catalytic activity for CO2RR.

Keywords

Nanoporous / Heterojunction / Interface / Dealloying / CO2 electroreduction

Cite this article

Download citation ▾
Yifan Zhu, Yijie Wang, Cuiping Li, Fengxia Li, Li Li, Caixia Xu, Weijia Zhou. Hierarchical Nanoporous Cu6Sn5/Sn Heterojunction with Accelerated CO2 Protonation for Formate Production. Transactions of Tianjin University, 2025, 31(4): 411-420 DOI:10.1007/s12209-025-00446-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Feng YX, Hao J, Zhu S. et al.. Copper oxide foam with high specific surface area for electrocatalytic reduction of CO2 to C2+ products. cMat, 2024, 1(1. e19

[2]

Yan B, Xu B, Jin Y. et al.. AuAg plasmonic nanoalloys with asymmetric charge distribution on CeO2 nanorods for selective photocatalytic CO2-to-CH4 conversion. cMat, 2024, 1(3. e28

[3]

He X, Li C, Su T. Preparation of In2O3/BiOBr composite photocatalyst and its performance for photocatalytic CO2 reduction. J Liaocheng Univ Nat Sci Ed, 2025, 38(4): 565-578

[4]

Gao X, Cao L, Chang Y. et al.. Improving the CO2 hydrogenation activity of photocatalysts via the synergy between surface frustrated lewis pairs and the CuPt alloy. ACS Sustain Chem Eng, 2023, 11(14): 5597-5607.

[5]

Amrillah T, Supandi AR, Puspasari V. et al.. MXene-based photocatalysts and electrocatalysts for CO2 conversion to chemicals. Trans Tianjin Univ, 2022, 28(4): 307-322.

[6]

Ji Y, Du J, Chen A. Review on heteroatom doping carbonaceous materials toward electrocatalytic carbon dioxide reduction. Trans Tianjin Univ, 2022, 28(4): 292-306.

[7]

Lin X, Zhen S, Wang X. et al.. Data-driven design of single-atom electrocatalysts with intrinsic descriptors for carbon dioxide reduction reaction. Trans Tianjin Univ, 2024, 30(5): 459-469.

[8]

Wang X, Zhao S, Guo T. et al.. Designing membrane electrode assembly for electrochemical CO2 reduction: a review. Trans Tianjin Univ, 2024, 30(2): 117-129.

[9]

Shi Y, Wang Y, Yu J. et al.. Superscalar phase boundaries derived multiple active sites in SnO2/Cu6Sn5/CuO for tandem electroreduction of CO2 to formic acid. Adv Energy Mater, 2023, 13(13. 2203506

[10]

Wang Y, Chen Y, Zhao Y. et al.. Laser-fabricated channeled Cu6Sn5/Sn as electrocatalyst and gas diffusion electrode for efficient CO2 electroreduction to formate. Appl Catal B-Environ Energy, 2022, 307. 120991

[11]

Chen F, Yao Z, Lyu Z. et al.. Recent advances in p-block metal chalcogenide electrocatalysts for high-efficiency CO2 reduction. eScience, 2024, 4(2. 100172

[12]

Tang T, Wang Z, Guan J. Optimizing the electrocatalytic selectivity of carbon dioxide reduction reaction by regulating the electronic structure of single-atom M-N-C materials. Adv Funct Mater, 2022, 32(19. 2111504

[13]

Li P, Yang F, Li J. et al.. Nanoscale engineering of P-block metal-based catalysts toward industrial-scale electrochemical reduction of CO2. Adv Energy Mater, 2023, 13(34. 2301597

[14]

Vasileff A, Zhi X, Xu C. et al.. Selectivity control for electrochemical CO2 reduction by charge redistribution on the surface of copper alloys. ACS Catal, 2019, 9(10): 9411-9417.

[15]

Wan W, Zhou Y, Zeng S. et al.. Nanoporous intermetallic Cu3Sn/Cu hybrid electrodes as efficient electrocatalysts for carbon dioxide reduction. Small, 2021, 17(35): 2100683.

[16]

Zhang Y, Liu D, Ren X. et al.. Research progress in microstructure control and surface modification of additive manufacturing titanium alloys. J Liaocheng Univ Nat Sci Ed, 2025, 38(04): 543-553

[17]

Xing Y, Wang S, Fang B. et al.. Three-dimensional nanoporous Cu6Sn5/Cu composite from dealloying as anode for lithium ion batteries. Micropor Mesopor Mat, 2018, 261: 237-243.

[18]

Jian T, Ma W, Hou J. et al.. From Ru to RuAl intermetallic/Ru heterojunction: Enabling high reversibility of the CO2 redox reaction in Li–CO2 battery based on lowered interface thermodynamic energy barrier. Nano Energy, 2023, 118. 108998

[19]

Chen C, Huang H, Chen Y. et al.. Interface-engineered Cu/Cu2In metallic aerogels for efficient electrochemical CO2 reduction. ACS Mater Lett, 2024, 6(3): 756-764.

[20]

Xu X, Guo K, Sun J. et al.. Interface engineering of Mo-doped Ni2P/FexP-V multiheterostructure for efficient dual-pH hydrogen evolution and overall water splitting. Adv Funct Mater, 2024, 34(33. 2400397

[21]

Yuan H, Kong B, Liu Z. et al.. Dealloying-derived nanoporous Sn-doped copper with prior selectivity toward formate for CO2 electrochemical reduction. Chem Commun, 2024, 60(2): 184-187.

[22]

Li H, Huang H, Chen Y. et al.. High-entropy alloy aerogels: a new platform for carbon dioxide reduction. Adv Mater, 2023, 35(2. 2209242

[23]

Wang M, Chen H, Wang M. et al.. Tuning C1/C2 selectivity of CO2 electrochemical reduction over in-situ evolved CuO/SnO2 heterostructure. Angew Chem Int Ed, 2023, 62(40. e202306456

[24]

Zhao Y, Liang J, Wang C. et al.. Tunable and efficient tin modified nitrogen-doped carbon nanofibers for electrochemical reduction of aqueous carbon dioxide. Adv Energy Mater, 2018, 8(10. 1702524

[25]

Wang S, Kou T, Varley JB. et al.. Cu2O/CuS nanocomposites show excellent selectivity and stability for formate generation via electrochemical reduction of carbon dioxide. ACS Mater Lett, 2021, 3(1): 100-109.

[26]

Duan Y, Meng F, Liu K. et al.. Amorphizing of Cu nanoparticles toward highly efficient and robust electrocatalyst for CO2 reduction to liquid fuels with high faradaic efficiencies. Adv Mater, 2018, 30(14. 1706194

[27]

Yuan H, Liu Z, Sang S. et al.. Dynamic re-construction of sulfur tailored Cu2O for efficient electrochemical CO2 reduction to formate over a wide potential window. Appl Surf Sci, 2023, 613. 156130

[28]

Gunji T, Ochiai H, Isawa Y. et al.. Electrocatalytic conversion of carbon dioxide to formic acid over nanosized Cu6Sn5 intermetallic compounds with a SnO2 shell layer. Catal Sci Technol, 2019, 9(23): 6577-6584.

[29]

Chen Y, Kanan MW. Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. J Am Chem Soc, 2012, 134(4): 1986-1989.

[30]

Huang Y, Handoko AD, Hirunsit P. et al.. Electrochemical reduction of CO2 using copper single-crystal surfaces: effects of CO* coverage on the selective formation of ethylene. ACS Catal, 2017, 7(3): 1749-1756.

[31]

Lei F, Liu W, Sun Y. et al.. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction. Nat Commun, 2016, 7(1): 12697.

[32]

Fu HQ, Liu J, Bedford NM. et al.. Synergistic Cr2O3@Ag heterostructure enhanced electrocatalytic CO2 reduction to CO. Adv Mater, 2022, 34(29. 2202854

[33]

Li Z, Sun B, Xiao D. et al.. Electron-rich Bi nanosheets promote CO2⋅- formation for high-performance and pH-universal electrocatalytic CO2 reduction. Angew Chem Int Ed, 2023, 62(11. e202217569

[34]

Xie F, Wang Z, Kao C. et al.. Asymmetric local electric field induced by dual heteroatoms on copper boosts efficient CO2 reduction over ultrawide potential window. Angew Chem Int Ed, 2024, 63(37. e202407661

[35]

Wang W, Wang Z, Yang R. et al.. In situ phase separation into coupled interfaces for promoting CO2 electroreduction to formate over a wide potential window. Angew Chem Int Ed, 2021, 60(42): 22940-22947.

[36]

Li J, Liu H, Gou W. et al.. Ethylene-glycol ligand environment facilitates highly efficient hydrogen evolution of Pt/CoP through proton concentration and hydrogen spillover. Energ Environ Sci, 2019, 12(7): 2298-2304.

[37]

Li Z, Niu W, Yang Z. et al.. Boosting alkaline hydrogen evolution: the dominating role of interior modification in surface electrocatalysis. Energ Environ Sci, 2020, 13(9): 3110-3118.

[38]

Fang C, Huang L, Gao W. et al.. Oxygen-pinned Ag1In single-atom alloy for efficient electroreduction CO2 to formate. Adv Energy Mater, 2024, 14(27. 2400813

[39]

Chen S, Li X, Kao C. et al.. Unveiling the proton-feeding effect in sulfur-doped Fe−N−C single-atom catalyst for enhanced CO2 electroreduction. Angew Chem Int Ed, 2022, 61(32. e202206233

[40]

Wang Y, Kattel S, Gao W. et al.. Exploring the ternary interactions in Cu–ZnO–ZrO2 catalysts for efficient CO2 hydrogenation to methanol. Nat Commun, 2019, 10(1): 1166.

[41]

Sheng J, He Y, Li J. et al.. Identification of halogen-associated active sites on bismuth-based perovskite quantum dots for efficient and selective CO2-to-CO photoreduction. ACS Nano, 2020, 14(10): 13103-13114.

[42]

Liu C, Wu Y, Sun K. et al.. Constructing FeN4/graphitic nitrogen atomic interface for high-efficiency electrochemical CO2 reduction over a broad potential window. Chem, 2021, 7(5): 1297-1307.

RIGHTS & PERMISSIONS

The Author(s) under exclusive licence to Tianjin University

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/