Enhanced Ethylene Production from Electrocatalytic Acetylene Semi-hydrogenation Over Porous Carbon-Supported Cu Nanoparticles
Li Li , Fanpeng Chen , Bo-Hang Zhao , Yifu Yu
Transactions of Tianjin University ›› 2024, Vol. 30 ›› Issue (4) : 297 -304.
Enhanced Ethylene Production from Electrocatalytic Acetylene Semi-hydrogenation Over Porous Carbon-Supported Cu Nanoparticles
Electrocatalytic semi-hydrogenation of acetylene (C2H2) over copper nanoparticles (Cu NPs) offers a promising non-petroleum alternative for the green production of ethylene (C2H4). However, server hydrogen evolution reaction (HER) competition in this process prominently decreases C2H4 selectivity, thereby hindering its practical application. Herein, a Cu-based composite catalyst, wherein porous carbon with nanoscale pores was used as a support, is constructed to gather the C2H2 feedstocks for suppressing the undesirable HER. As a result, the as-prepared catalyst exhibited C2H2 conversion of 27.1% and C2H4 selectivity of 88.4% at a C2H4 partial current density of 0.25 A/cm2 under optimal − 1.0 V versus reversible hydrogen electrode (RHE) under the simulated coal-derived C2H2 atmosphere, significantly outperforming the single Cu NPs counterparts. In addition, a series of in situ and ex situ experimental results show that not only the porous nature of the carbon support but also the stabilized Cu0–Cu+ dual active sites through the strong metal–support interactions enhance the adsorption capacity of C2H2, leading to high C2H2 partial pressure, restraining the HER and thus improving the C2H4 selectivity.
Electrocatalysis / Cu-based catalyst / Hydrogenation / Ethylene / Selectivity
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
/
| 〈 |
|
〉 |