Designing Membrane Electrode Assembly for Electrochemical CO2 Reduction: a Review

Xuerong Wang , Shulin Zhao , Tao Guo , Luyao Yang , Qianqian Zhao , Yuping Wu , Yuhui Chen

Transactions of Tianjin University ›› 2024, Vol. 30 ›› Issue (2) : 117 -129.

PDF
Transactions of Tianjin University ›› 2024, Vol. 30 ›› Issue (2) : 117 -129. DOI: 10.1007/s12209-024-00390-5
Review

Designing Membrane Electrode Assembly for Electrochemical CO2 Reduction: a Review

Author information +
History +
PDF

Abstract

Currently, the electrochemical CO2 reduction reaction (CO2RR) can realize the resource conversion of CO2, which is a promising approach to carbon resource use. Important advancements have been made in exploring the CO2RR performance and mechanism because of the rational design of electrolyzer systems, such as H-cells, flow cells, and catalysts. Considering the future development direction of this technology and large-scale application needs, membrane electrode assembly (MEA) systems can improve energy use efficiency and achieve large-scale CO2 conversion, which is considered the most promising technology for industrial applications. This review will concentrate on the research progress and present situation of the MEA component structure. This paper begins with the composition and construction of a gas diffusion electrode. Then, the application of ion-exchange membranes in MEA is introduced. Furthermore, the effects of pH and the anion and cation of the anolyte on MEA performance are explored. Additionally, we present the anode reaction type in MEA. Finally, the challenges in this field are summarized, and upcoming trends are projected. This review should offer researchers a clearer picture of MEA systems and provide important, timely, and valuable insights into rational electrolyzer design to facilitate further development of CO2 electrochemical reduction.

Graphical Abstract

Keywords

CO2 reduction / Electrocatalysis / Membrane electrode assembly

Cite this article

Download citation ▾
Xuerong Wang, Shulin Zhao, Tao Guo, Luyao Yang, Qianqian Zhao, Yuping Wu, Yuhui Chen. Designing Membrane Electrode Assembly for Electrochemical CO2 Reduction: a Review. Transactions of Tianjin University, 2024, 30(2): 117-129 DOI:10.1007/s12209-024-00390-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Costentin C, Robert M, Savéant JM Catalysis of the electrochemical reduction of carbon dioxide. Chem Soc Rev, 2013, 42(6): 2423-2436.

[2]

Schreier M, Héroguel F, Steier L, et al. Solar conversion of CO2–CO using earth-abundant electrocatalysts prepared by atomic layer modification of CuO. Nat Energy, 2017, 2(7): 17087.

[3]

Bushuyev OS, De Luna P, Dinh CT, et al. What should we make with CO2 and how can we make it?. Joule, 2018, 2(5): 825-832.

[4]

Gao D, Wei P, Li H, et al. Designing electrolyzers for electrocatalytic CO2 reduction. Acta Phys Chim Sin, 2020, 37: 2009020-2009021.

[5]

Voiry D, Shin HS, Loh KP, et al. Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nat Rev Chem, 2018, 2: 105.

[6]

Lees EW, Mowbray BAW, Parlane FGL, et al. Gas diffusion electrodes and membranes for CO2 reduction electrolysers. Nat Rev Mater, 2022, 7: 55-64.

[7]

Zhang S, Fan Q, Xia R, et al. CO2 reduction: from homogeneous to heterogeneous electrocatalysis. Acc Chem Res, 2020, 53(1): 255-264.

[8]

Pan F, Yang Y Designing CO2 reduction electrode materials by morphology and interface engineering. Energy Environ Sci, 2020, 13(8): 2275-2309.

[9]

Gu J, Hsu CS, Bai L, et al. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science, 2019, 364(6445): 1091-1094.

[10]

Cheng Y, Hou P, Wang X, et al. CO2 electrolysis system under industrially relevant conditions. Acc Chem Res, 2022, 55(3): 231-240.

[11]

Lin R, Guo J, Li X, et al. Electrochemical reactors for CO2 conversion. Catalysts, 2020, 10(5): 473.

[12]

Overa S, Ko BH, Zhao Y, et al. Electrochemical approaches for CO2 conversion to chemicals: a journey toward practical applications. Acc Chem Res, 2022, 55(5): 638-648.

[13]

Rabiee H, Ge L, Zhang X, et al. Gas diffusion electrodes (GDEs) for electrochemical reduction of carbon dioxide, carbon monoxide, and dinitrogen to value-added products: a review. Energy Environ Sci, 2021, 14(4): 1959-2008.

[14]

Wakerley D, Lamaison S, Wicks J, et al. Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers. Nat Energy, 2022, 7: 130-143.

[15]

Reyes A, Jansonius RP, Mowbray BAW, et al. Managing hydration at the cathode enables efficient CO2 electrolysis at commercially relevant current densities. ACS Energy Lett, 2020, 5(5): 1612-1618.

[16]

Ma D, Jin T, Xie K, et al. An overview of flow cell architecture design and optimization for electrochemical CO2 reduction. J Mater Chem A, 2021, 9(37): 20897-20918.

[17]

Weng LC, Bell AT, Weber AZ Modeling gas-diffusion electrodes for CO2 reduction. Phys Chem Chem Phys, 2018, 20(25): 16973-16984.

[18]

Lapicque F, Belhadj M, Bonnet C, et al. A critical review on gas diffusion micro and macroporous layers degradations for improved membrane fuel cell durability. J Power Sources, 2016, 336: 40-53.

[19]

Leonard ME, Clarke LE, Forner-Cuenca A, et al. Investigating electrode flooding in a flowing electrolyte, gas-fed carbon dioxide electrolyzer. Chemsuschem, 2020, 13(2): 400-411.

[20]

Shi R, Guo J, Zhang X, et al. Efficient wettability-controlled electroreduction of CO2 to CO at Au/C interfaces. Nat Commun, 2020, 11(1): 3028.

[21]

Gabardo CM, O’Brien CP, Edwards JP, et al. Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly. Joule, 2019, 3(11): 2777-2791.

[22]

Velayutham G, Kaushik J, Rajalakshmi N, et al. Effect of PTFE content in gas diffusion media and microlayer on the performance of PEMFC tested under ambient pressure. Fuel Cells, 2007, 7(4): 314-318.

[23]

Kim B, Hillman F, Ariyoshi M, et al. Effects of composition of the micro porous layer and the substrate on performance in the electrochemical reduction of CO2 to CO. J Power Sources, 2016, 312: 192-198.

[24]

Zhong M, Tran K, Min Y, et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature, 2020, 581(7807): 178-183.

[25]

Orogbemi OM, Ingham DB, Ismail MS, et al. The effects of the composition of microporous layers on the permeability of gas diffusion layers used in polymer electrolyte fuel cells. Int J Hydrog Energy, 2016, 41(46): 21345-21351.

[26]

Wang Z, Li Y, Zhao X, et al. Localized alkaline environment via in situ electrostatic confinement for enhanced CO2-to-ethylene conversion in neutral medium. J Am Chem Soc, 2023, 145(11): 6339-6348.

[27]

Liu M, Hu H, Kong Y, et al. The role of ionomers in the electrolyte management of zero-gap MEA-based CO2 electrolysers: a Fumion versus Nafion comparison. Appl Catal B Environ, 2023, 335.

[28]

Merino-Garcia I, Alvarez-Guerra E, Albo J, et al. Electrochemical membrane reactors for the utilisation of carbon dioxide. Chem Eng J, 2016, 305: 104-120.

[29]

Weekes DM, Salvatore DA, Reyes A, et al. Electrolytic CO2 reduction in a flow cell. Acc Chem Res, 2018, 51(4): 910-918.

[30]

Salvatore DA, Gabardo CM, Reyes A, et al. Designing anion exchange membranes for CO2 electrolysers. Nat Energy, 2021, 6: 339-348.

[31]

Kibria MG, Edwards JP, Gabardo CM, et al. Electrochemical CO2 reduction into chemical feedstocks: from mechanistic electrocatalysis models to system design. Adv Mater, 2019, 31(31

[32]

Zheng Y, Jiao Y, Vasileff A, et al. The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts. Angew Chem Int Ed Engl, 2018, 57(26): 7568-7579.

[33]

Jiang K, Siahrostami S, Zheng T, et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ Sci, 2018, 11(4): 893-903.

[34]

Yanagi R, Zhao T, Cheng M, et al. Photocatalytic CO2 reduction with dissolved carbonates and near-zero CO2(aq) by employing long-range proton transport. J Am Chem Soc, 2023, 145(28): 15381-15392.

[35]

Hori Y, Ito H, Okano K, et al. Silver-coated ion exchange membrane electrode applied to electrochemical reduction of carbon dioxide. Electrochim Acta, 2003, 48(18): 2651-2657.

[36]

Sassenburg M, Kelly M, Subramanian S, et al. Zero-gap electrochemical CO2 reduction cells: challenges and operational strategies for prevention of salt precipitation. ACS Energy Lett, 2022, 8(1): 321-331.

[37]

Xu Y, Miao RK, Edwards JP, et al. A microchanneled solid electrolyte for carbon-efficient CO2 electrolysis. Joule, 2022, 6(6): 1333-1343.

[38]

Pan B, Fan J, Zhang J, et al. Close to 90% single-pass conversion efficiency for CO2 electroreduction in an acid-fed membrane electrode assembly. ACS Energy Lett, 2022, 7(12): 4224-4231.

[39]

Lee W, Kim YE, Youn MH, et al. Catholyte-free electrocatalytic CO2 reduction to formate. Angew Chem Int Ed Engl, 2018, 57(23): 6883-6887.

[40]

Zhang Z, Huang X, Chen Z, et al. Membrane electrode assembly for electrocatalytic CO2 reduction: principle and application. Angew Chem Int Ed Engl, 2023, 62(28

[41]

Xie K, Miao RK, Ozden A, et al. Bipolar membrane electrolyzers enable high single-pass CO2 electroreduction to multicarbon products. Nat Commun, 2022, 13(1): 3609.

[42]

Blommaert MA, Aili D, Tufa RA, et al. Insights and challenges for applying bipolar membranes in advanced electrochemical energy systems. ACS Energy Lett, 2021, 6(7): 2539-2548.

[43]

McDonald MB, Ardo S, Lewis NS, et al. Use of bipolar membranes for maintaining steady-state pH gradients in membrane-supported, solar-driven water splitting. Chemsuschem, 2014, 7(11): 3021-3027.

[44]

Vargas-Barbosa NM, Geise GM, Hickner MA, et al. Assessing the utility of bipolar membranes for use in photoelectrochemical water-splitting cells. Chemsuschem, 2014, 7(11): 3017-3020.

[45]

Li YC, Zhou D, Yan Z, et al. Electrolysis of CO2 to syngas in bipolar membrane-based electrochemical cells. ACS Energy Lett, 2016, 1: 1149-1153.

[46]

Yang K, Li M, Subramanian S, et al. Cation-driven increases of CO2 utilization in a bipolar membrane electrode assembly for CO2 electrolysis. ACS Energy Lett, 2021, 6(12): 4291-4298.

[47]

Vermaas DA, Smith WA Synergistic electrochemical CO2 reduction and water oxidation with a bipolar membrane. ACS Energy Lett, 2016, 1(6): 1143-1148.

[48]

Nitopi S, Bertheussen E, Scott SB, et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem Rev, 2019, 119(12): 7610-7672.

[49]

Zhong H, Fujii K, Nakano Y, et al. Effect of CO2 bubbling into aqueous solutions used for electrochemical reduction of CO2 for energy conversion and storage. J Phys Chem C, 2015, 119(1): 55-61.

[50]

Ma M, Clark EL, Therkildsen KT, et al. Insights into the carbon balance for CO2 electroreduction on Cu using gas diffusion electrode reactor designs. Energy Environ Sci, 2020, 13(3): 977-985.

[51]

Liu M, Pang Y, Zhang B, et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature, 2016, 537(7620): 382-386.

[52]

Bohra D, Chaudhry JH, Burdyny T, et al. Modeling the electrical double layer to understand the reaction environment in a CO2 electrocatalytic system. Energy Environ Sci, 2019, 12(11): 3380-3389.

[53]

Li Z, Sun B, Xiao D, et al. Electron-rich Bi nanosheets promote CO2- formation for high-performance and pH-universal electrocatalytic CO2 reduction. Angew Chem Int Ed Engl, 2023, 62(11

[54]

Ma M, Djanashvili K, Smith WA Controllable hydrocarbon formation from the electrochemical reduction of CO2 over Cu nanowire arrays. Angew Chem Int Ed Engl, 2016, 55(23): 6680-6684.

[55]

Varela AS, Kroschel M, Leonard ND, et al. pH effects on the selectivity of the electrocatalytic CO2 reduction on graphene-embedded Fe–N–C motifs: bridging concepts between molecular homogeneous and solid-state heterogeneous catalysis. ACS Energy Lett, 2018, 3(4): 812-817.

[56]

Baricuatro JH, Kwon S, Kim YG, et al. Operando electrochemical spectroscopy for CO on Cu(100) at pH 1–13:validation of grand canonical potential predictions. ACS Catal, 2021, 11(5): 3173-3181.

[57]

Sebastián-Pascual P, Petersen AS, Bagger A, et al. pH and anion effects on Cu–phosphate interfaces for CO electroreduction. ACS Catal, 2021, 11(3): 1128-1135.

[58]

Lu X, Zhu C, Wu Z, et al. In situ observation of the pH gradient near the gas diffusion electrode of CO2 reduction in alkaline electrolyte. J Am Chem Soc, 2020, 142(36): 15438-15444.

[59]

Zhang Z, Melo L, Jansonius RP, et al. pH matters when reducing CO2 in an electrochemical flow cell. ACS Energy Lett, 2020, 5(10): 3101-3107.

[60]

She X, Zhai L, Wang Y, et al. Pure-water-fed, electrocatalytic CO2 reduction to ethylene beyond 1000 h stability at 10 A. Nat Energy, 2024, 9: 81-91.

[61]

O’Brien CP, Miao RK, Liu S, et al. Single pass CO2 conversion exceeding 85% in the electrosynthesis of multicarbon products via local CO2 regeneration. ACS Energy Lett, 2021, 6(8): 2952-2959.

[62]

Kim C, Bui JC, Luo X, et al. Tailored catalyst microenvironments for CO2 electroreduction to multicarbon products on copper using bilayer ionomer coatings. Nat Energy, 2021, 6: 1026-1034.

[63]

Park J, Ko YJ, Lim C, et al. Strategies for CO2 electroreduction in cation exchange membrane electrode assembly. Chem Eng J, 2023, 453.

[64]

Le D, Rahman TS On the role of metal cations in CO2 electrocatalytic reduction. Nat Catal, 2022, 5: 977-978.

[65]

Bhugun I, Lexa D, Savéant JM Catalysis of the electrochemical reduction of carbon dioxide by iron (0) porphyrins synergistic effect of Lewis acid cations. J Phys Chem, 1996, 100(51): 19981-19985.

[66]

Jin Z, Guo Y, Qiu C Electro-conversion of carbon dioxide to valuable chemicals in a membrane electrode assembly. Sustainability, 2022, 14(9): 5579.

[67]

Murata A, Hori Y Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode. Bull Chem Soc Jpn, 1991, 64(1): 123-127.

[68]

Endrődi B, Samu A, Kecsenovity E, et al. Operando cathode activation with alkali metal cations for high current density operation of water-fed zero-gap carbon dioxide electrolyzers. Nat Energy, 2021, 6(4): 439-448.

[69]

Hsieh YC, Senanayake SD, Zhang Y, et al. Effect of chloride anions on the synthesis and enhanced catalytic activity of silver nanocoral electrodes for CO2 electroreduction. ACS Catal, 2015, 5(9): 5349-5356.

[70]

Resasco J, Lum Y, Clark E, et al. Effects of anion identity and concentration on electrochemical reduction of CO2. ChemElectroChem, 2018, 5(7): 1064-1072.

[71]

Deng B, Huang M, Zhao X, et al. Interfacial electrolyte effects on electrocatalytic CO2 reduction. ACS Catal, 2021, 12(1): 331-362.

[72]

Gabardo CM, Seifitokaldani A, Edwards JP, et al. Combined high alkalinity and pressurization enable efficient CO2 electroreduction to CO. Energy Environ Sci, 2018, 11(9): 2531-2539.

[73]

Ogura K, Ferrell JR, Cugini AV, et al. CO2 attraction by specifically adsorbed anions and subsequent accelerated electrochemical reduction. Electrochim Acta, 2010, 56(1): 381-386.

[74]

Lv X, Yang Y, Lv J, et al. Iodine-mediated C─C coupling in neutral flow cell for electrochemical CO2 reduction. Adv Funct Mater, 2023, 34: 2311236.

[75]

Varela AS, Ju W, Reier T, et al. Tuning the catalytic activity and selectivity of Cu for CO2 electroreduction in the presence of halides. ACS Catal, 2016, 6(4): 2136-2144.

[76]

Wang J, Qin Y, Jin S, et al. Customizing CO2 electroreduction by pulse-induced anion enrichment. J Am Chem Soc, 2023, 145(48): 26213-26221.

[77]

Wu QJ, Si DH, Wu Q, et al. Boosting electroreduction of CO2 over cationic covalent organic frameworks: hydrogen bonding effects of halogen ions. Angew Chem Int Ed Engl, 2023, 62(7

[78]

Yun H, Choi W, Shin D, et al. Atomic arrangement of AuAg alloy on carbon support enhances electrochemical CO2 reduction in membrane electrode assembly. ACS Catal, 2023, 13(13): 9302-9312.

[79]

Li D, Yang J, Lian J, et al. Recent advances in paired electrolysis coupling CO2 reduction with alternative oxidation reactions. J Energy Chem, 2023, 77: 406-419.

[80]

Chen H, Ding C, Kang C, et al. The design of alternative anodic reactions paired with electrochemical CO2 reduction. Green Chem, 2023, 25(14): 5320-5337.

[81]

Na J, Seo B, Kim J, et al. General technoeconomic analysis for electrochemical coproduction coupling carbon dioxide reduction with organic oxidation. Nat Commun, 2019, 10(1): 5193.

[82]

Verma S, Lu S, Kenis PJA Co-electrolysis of CO2 and glycerol as a pathway to carbon chemicals with improved technoeconomics due to low electricity consumption. Nat Energy, 2019, 4: 466-474.

[83]

Wei X, Li Y, Chen L, et al. Formic acid electro-synthesis by concurrent cathodic CO2 reduction and anodic CH3OH oxidation. Angew Chem Int Ed Engl, 2021, 60(6): 3148-3155.

[84]

Cao C, Ma DD, Jia J, et al. Divergent paths, same goal: a pair-electrosynthesis tactic for cost-efficient and exclusive formate production by metal-organic-framework-derived 2D electrocatalysts. Adv Mater, 2021, 33(25

[85]

Zhou Y, Wang Z, Fang W, et al. Modulating O–H activation of methanol oxidation on nickel-organic frameworks for overall CO2 electrolysis. ACS Catal, 2023, 13(3): 2039-2046.

[86]

Xie K, Ozden A, Miao RK, et al. Eliminating the need for anodic gas separation in CO2 electroreduction systems via liquid-to-liquid anodic upgrading. Nat Commun, 2022, 13: 3070.

AI Summary AI Mindmap
PDF

211

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/