Electrolyte Strategies Toward Optimizing Zn Anode for Zinc-Ion Batteries

Zenglong Xu , Huiyan Xu , Jinfeng Sun , Jieqiang Wang , Degang Zhao , Bingqiang Cao , Xiutong Wang , Shuhua Yang

Transactions of Tianjin University ›› 2023, Vol. 29 ›› Issue (6) : 407 -431.

PDF
Transactions of Tianjin University ›› 2023, Vol. 29 ›› Issue (6) : 407 -431. DOI: 10.1007/s12209-023-00373-y
Review

Electrolyte Strategies Toward Optimizing Zn Anode for Zinc-Ion Batteries

Author information +
History +
PDF

Abstract

Zinc-ion batteries (ZIBs) with low cost and high safety have become potential candidates for large-scale energy storage. However, the knotty Zn anode issues such as dendritic growth, hydrogen evolution reaction (HER) and corrosion and passivation are still unavoidable, which greatly limits the wide applications of ZIBs. The states and additives of electrolytes are closely related to these problems. However, there is a lack of systematic understanding and discussion about the intrinsic connection between the states and additives of electrolyte and Zn anode issues. In this review, the basic principles of dendritic growth, HER and corrosion and passivation are firstly introduced, and then, electrolyte optimization strategies with the corresponding electrochemical properties are systematically summarized. In particular, the action mechanism of electrolyte additives and the electrolyte states for Zn anode optimization is analyzed in detail. Finally, some unique views on the improvement of electrolyte for Zn anode optimization are put forward, which is expected to provide a certain professional reference for designing high-performance ZIBs.

Keywords

Zinc-ion batteries / Zn anode / Electrolyte / Additives

Cite this article

Download citation ▾
Zenglong Xu, Huiyan Xu, Jinfeng Sun, Jieqiang Wang, Degang Zhao, Bingqiang Cao, Xiutong Wang, Shuhua Yang. Electrolyte Strategies Toward Optimizing Zn Anode for Zinc-Ion Batteries. Transactions of Tianjin University, 2023, 29(6): 407-431 DOI:10.1007/s12209-023-00373-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dunn B, Kamath H, Tarascon JM Electrical energy storage for the grid: a battery of choices. Science, 2011, 334(6058): 928-935.

[2]

Lindroos TJ, Mäki E, Koponen K, et al. Replacing fossil fuels with bioenergy in district heating–comparison of technology options. Energy, 2021, 231: 120799.

[3]

Mutezo G, Mulopo J A review of Africa’s transition from fossil fuels to renewable energy using circular economy principles. Renew Sustain Energy Rev, 2021, 137: 110609.

[4]

Qiu S, Lei T, Wu JT, et al. Energy demand and supply planning of China through 2060. Energy, 2021, 234: 121193.

[5]

Li M, Lu J, Chen ZW, et al. 30 years of lithium-ion batteries. Adv Mater, 2018, 30: e1800561.

[6]

Yuan WJ, Chen ZH, Grasby SE, et al. Closed-loop geothermal energy recovery from deep high enthalpy systems. Renew Energy, 2021, 177: 976-991.

[7]

Liao M, Ye L, Zhang Y, et al. The recent advance in fiber-shaped energy storage devices. Adv Electron Mater, 2018, 5(1): 1800456.

[8]

Li XY, Chen G, Le ZY, et al. Well-dispersed phosphorus nanocrystals within carbon via high-energy mechanical milling for high performance lithium storage. Nano Energy, 2019, 59: 464-471.

[9]

Wu MS, Chiang PCJ Electrochemically deposited nanowires of manganese oxide as an anode material for lithium-ion batteries. Electrochem Commun, 2006, 8(3): 383-388.

[10]

Larcher D, Tarascon JM Towards greener and more sustainable batteries for electrical energy storage. Nat Chem, 2015, 7(1): 19-29.

[11]

Qiu ZF, Shi LY, Wang ZY, et al. Surface activated polyethylene separator promoting Li+ ion transport in gel polymer electrolytes and cycling stability of Li-metal anode. Chem Eng J, 2019, 368: 321-330.

[12]

Hou ZG, Dong MF, Xiong YL, et al. A high-energy and long-life aqueous Zn/birnessite battery via reversible water and Zn2+ coinsertion. Small, 2020, 16(26): e2001228.

[13]

Hou HS, Banks CE, Jing MJ, et al. Sodium-ion batteries: carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv Mater, 2015, 27(47): 7895.

[14]

Zhang CC, Li QA, Wang TD, et al. An improved bioinspired strategy to construct nitrogen and phosphorus dual-doped network porous carbon with boosted kinetics potassium ion capacitors. Nanoscale, 2022, 14(17): 6339-6348.

[15]

Xu XM, Duan MY, Yue YF, et al. Bilayered Mg0.25V2O5·H2O as a stable cathode for rechargeable Ca-ion batteries. ACS Energy Lett, 2019, 4(6): 1328-1335.

[16]

Geng LS, Meng JS, Wang XP, et al. Eutectic electrolyte with unique solvation structure for high-performance zinc-ion batteries. Angew Chem Int Ed, 2022, 61(31): e202206717.

[17]

Chang NN, Li TY, Li R, et al. An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices. Energy Environ Sci, 2020, 13(10): 3527-3535.

[18]

Bani Hashemi A, Kasiri G, La Mantia F The effect of polyethyleneimine as an electrolyte additive on zinc electrodeposition mechanism in aqueous zinc-ion batteries. Electrochim Acta, 2017, 258: 703-708.

[19]

Liu CX, Zhang L, Chen D, et al. Dual ions pre-intercalated hydrate vanadium oxide as cathode drives high-performance aqueous zinc ions storage. J Alloys Compd, 2023, 947: 169476.

[20]

Feng KY, Wang DX, Yu YJ Progress and prospect of Zn anode modification in aqueous zinc-ion batteries: experimental and theoretical aspects. Molecules, 2023, 28(6): 2721.

[21]

Ma L, Lee JZ, Pollard TP, et al. High-efficiency zinc-metal anode enabled by liquefied gas electrolytes. ACS Energy Lett, 2021, 6(12): 4426-4430.

[22]

Guo S, Qin LP, Zhang TS, et al. Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries. Energy Storage Mater, 2021, 34: 545-562.

[23]

Soundharrajan V, Sambandam B, Kim S, et al. The dominant role of Mn2+ additive on the electrochemical reaction in ZnMn2O4 cathode for aqueous zinc-ion batteries. Energy Storage Mater, 2020, 28: 407-417.

[24]

Zhu KY, Wu T, Huang K Understanding the dissolution and phase transformation mechanisms in aqueous Zn/α-V2O5 batteries. Chem Mater, 2021, 33(11): 4089-4098.

[25]

Huang M, Meng JS, Huang ZJ, et al. Ultrafast cation insertion-selected zinc hexacyanoferrate for 1.9 V K-Zn hybrid aqueous batteries. J Mater Chem A, 2020, 8(14): 6631-6637.

[26]

Sun QQ, Sun T, Du JY, et al. A sulfur heterocyclic quinone cathode towards high-rate and long-cycle aqueous Zn-organic batteries. Adv Mater, 2023, 35(22): e2301088.

[27]

Yang YQ, Guo S, Pan YC, et al. Dual mechanism of ion (de)intercalation and iodine redox towards advanced zinc batteries. Energy Environ Sci, 2023, 16(5): 2358-2367.

[28]

Bie Z, Yang Q, Cai XX, et al. One-step construction of a polyporous and zincophilic interface for stable zinc metal anodes (adv. energy mater. 44/2022). Adv Energy Mater, 2022, 12(44): 2202683.

[29]

Yabuuchi N, Shimomura K, Shimbe Y, et al. Graphite-silicon-polyacrylate negative electrodes in ionic liquid electrolyte for safer rechargeable Li-ion batteries. Adv Energy Mater, 2011, 1(5): 759-765.

[30]

Liu MQ, Yao L, Ji YC, et al. Nanoscale ultrafine zinc metal anodes for high stability aqueous zinc ion batteries. Nano Lett, 2023, 23(2): 541-549.

[31]

Chen JP, Zhao WY, Jiang JM, et al. Challenges and perspectives of hydrogen evolution-free aqueous Zn-ion batteries. Energy Storage Mater, 2023, 59: 102767.

[32]

Guo N, Huo WJ, Dong XY, et al. A review on 3D zinc anodes for zinc ion batteries. Small Methods, 2022, 6(9): e2200597.

[33]

Zhang YY, Zheng XB, Wang NN, et al. Anode optimization strategies for aqueous zinc-ion batteries. Chem Sci, 2022, 13(48): 14246-14263.

[34]

Zhang X, Hu JP, Fu N, et al. Comprehensive review on zinc-ion battery anode: challenges and strategies. InfoMat, 2022, 4(7): e12306.

[35]

Kao-ian W, Mohamad AA, Liu WR, et al. Stability enhancement of zinc-ion batteries using non-aqueous electrolytes. Batter Supercaps, 2022, 5(5): e202100361.

[36]

Khezri R, Rezaei Motlagh S, Etesami M, et al. Stabilizing zinc anodes for different configurations of rechargeable zinc-air batteries. Chem Eng J, 2022, 449: 137796.

[37]

Yang JZ, Yin BS, Sun Y, et al. Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nano-Micro Lett, 2022, 14(1): 42.

[38]

Yuan LB, Hao JN, Kao CC, et al. Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. Energy Environ Sci, 2021, 14(11): 5669-5689.

[39]

Xue P, Guo C, Wang NY, et al. Synergistic manipulation of Zn2+ ion flux and nucleation induction effect enabled by 3D hollow SiO2/TiO2/carbon fiber for long-lifespan and dendrite-free Zn–metal composite anodes. Adv Funct Mater, 2021, 31(50): 2106417.

[40]

Wang TY, Li YB, Zhang JQ, et al. Immunizing lithium metal anodes against dendrite growth using protein molecules to achieve high energy batteries. Nat Commun, 2020, 11(1): 1-9.

[41]

Yufit V, Tariq F, Eastwood DS, et al. Operando visualization and multi-scale tomography studies of dendrite formation and dissolution in zinc batteries. Joule, 2019, 3(2): 485-502.

[42]

Liu CX, Xie XS, Lu BG, et al. Electrolyte strategies toward better zinc-ion batteries. ACS Energy Lett, 2021, 6(3): 1015-1033.

[43]

Zhao ZM, Zhao JW, Hu ZL, et al. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ Sci, 2019, 12(6): 1938-1949.

[44]

Zeng XH, Mao JF, Hao JN, et al. Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Adv Mater, 2021, 33(11): e2007416.

[45]

Mitha A, Yazdi AZ, Ahmed M, et al. Surface adsorption of polyethylene glycol to suppress dendrite formation on zinc anodes in rechargeable aqueous batteries. ChemElectroChem, 2018, 5(17): 2409-2418.

[46]

Zhao JW, Zhang J, Yang WH, et al. “Water-in-deep eutectic solvent” electrolytes enable zinc metal anodes for rechargeable aqueous batteries. Nano Energy, 2019, 57: 625-634.

[47]

Mainar AR, Iruin E, Colmenares LC, et al. An overview of progress in electrolytes for secondary zinc-air batteries and other storage systems based on zinc. J Energy Storage, 2018, 15: 304-328.

[48]

Xie XS, Liang SQ, Gao JW, et al. Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ Sci, 2020, 13(2): 503-510.

[49]

Yang WH, Du XF, Zhao JW, et al. Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries. Joule, 2020, 4(7): 1557-1574.

[50]

Yang FH, Yuwono JA, Hao JN, et al. Understanding H2 evolution electrochemistry to minimize solvated water impact on zinc-anode performance. Adv Mater, 2022, 34(45): e2206754.

[51]

Gan XR, Tang J, Wang XY, et al. Aromatic additives with designed functions ameliorating chemo-mechanical reliability for zinc-ion batteries. Energy Storage Mater, 2023, 59: 102769.

[52]

Cao ZY, Zhuang PY, Zhang XA, et al. Strategies for dendrite-free anode in aqueous rechargeable zinc ion batteries. Adv Energy Mater, 2020, 10(30): 2001599.

[53]

Ma LT, Chen SM, Li N, et al. Hydrogen-free and dendrite-free all-solid-state Zn-ion batteries. Adv Mater, 2020, 32(14): e1908121.

[54]

Geng YF, Pan L, Peng ZY, et al. Electrolyte additive engineering for aqueous Zn ion batteries. Energy Storage Mater, 2022, 51: 733-755.

[55]

Bayaguud A, Fu YP, Zhu CB Interfacial parasitic reactions of zinc anodes in zinc ion batteries: underestimated corrosion and hydrogen evolution reactions and their suppression strategies. J Energy Chem, 2022, 64: 246-262.

[56]

Zhang TS, Tang Y, Guo S, et al. Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review. Energy Environ Sci, 2020, 13(12): 4625-4665.

[57]

Jia H, Wang ZQ, Tawiah B, et al. Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries. Nano Energy, 2020, 70: 104523.

[58]

Ding F, Xu W, Graff GL, et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J Am Chem Soc, 2013, 135(11): 4450-4456.

[59]

Xu YT, Zhu JJ, Feng JZ, et al. A rechargeable aqueous zinc/sodium manganese oxides battery with robust performance enabled by Na2SO4 electrolyte additive. Energy Storage Mater, 2021, 38: 299-308.

[60]

Yang S, Xue K, Li C, et al. NaF as a bifunctional additive in aqueous zinc electrolytes improves zinc metal reversibility. Ionics, 2023, 29(4): 1459-1468.

[61]

Wang PJ, Xie XS, Xing ZY, et al. Mechanistic insights of Mg2+-electrolyte additive for high-energy and long-life zinc-ion hybrid capacitors. Adv Energy Mater, 2021, 11(30): 2101158.

[62]

Xu WN, Zhao KN, Huo WC, et al. Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries. Nano Energy, 2019, 62: 275-281.

[63]

Bayaguud A, Luo XA, Fu YP, et al. Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries. ACS Energy Lett, 2020, 5(9): 3012-3020.

[64]

Ma XC, Shi YL, Liu JY, et al. Hydrogen-bond network promotes water splitting on the TiO2 surface. J Am Chem Soc, 2022, 144(30): 13565-13573.

[65]

Miao LC, Wang RH, Di SL, et al. Aqueous electrolytes with hydrophobic organic cosolvents for stabilizing zinc metal anodes. ACS Nano, 2022, 16(6): 9667-9678.

[66]

Wang YY, Wang ZJ, Pang WK, et al. Solvent control of water O−H bonds for highly reversible zinc ion batteries. Nat Commun, 2023, 14(1): 1-11.

[67]

Kundu DP, Hosseini Vajargah S, Wan LW, et al. Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Energy Environ Sci, 2018, 11(4): 881-892.

[68]

Chen SM, Ying YR, Ma LT, et al. An asymmetric electrolyte to simultaneously meet contradictory requirements of anode and cathode. Nat Commun, 2023, 14(1): 1-11.

[69]

Liu XJ, Li X, Yang XT, et al. Influence of water on gel electrolytes for zinc-ion batteries. Chem-Asian J, 2023, 18(4): e202201280.

[70]

Kao-ian W, Sangsawang J, Kidkhunthod P, et al. Unveiling the role of water in enhancing the performance of zinc-ion batteries using dimethyl sulfoxide electrolyte and the manganese dioxide cathode. J Mater Chem A, 2023, 11(20): 10584-10595.

[71]

Hao JN, Yuan LB, Ye C, et al. Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew Chem Int Ed, 2021, 60(13): 7366-7375.

[72]

Qin RZ, Wang YT, Zhang MZ, et al. Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries. Nano Energy, 2021, 80: 105478.

[73]

Li TC, Lim Y, Li XL, et al. A universal additive strategy to reshape electrolyte solvation structure toward reversible Zn storage. Adv Energy Mater, 2022, 12(15): 2103231.

[74]

Li ZZ, Liao YQ, Wang YD, et al. A co-solvent in aqueous electrolyte towards ultralong-life rechargeable zinc-ion batteries. Energy Storage Mater, 2023, 56: 174-182.

[75]

Miao ZY, Liu QL, Wei WR, et al. Unveiling unique steric effect of threonine additive for highly reversible Zn anode. Nano Energy, 2022, 97: 107145.

[76]

Sun P, Ma LA, Zhou WH, et al. Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew Chem Int Ed, 2021, 60(33): 18247-18255.

[77]

Zheng LL, Li HH, Wang X, et al. Competitive solvation-induced interphases enable highly reversible Zn anodes. ACS Energy Lett, 2023, 8(5): 2086-2096.

[78]

Feng XA, Li P, Yin JY, et al. Enabling highly reversible Zn anode by multifunctional synergistic effects of hybrid solute additives. ACS Energy Lett, 2023, 8(2): 1192-1200.

[79]

Chen JE, Zhang H, Fang MM, et al. Design of localized high-concentration electrolytes via donor number. ACS Energy Lett, 2023, 8(4): 1723-1734.

[80]

He Q, Gorlin Y, Patel MUM, et al. Unraveling the correlation between solvent properties and sulfur redox behavior in lithium-sulfur batteries. J Electrochem Soc, 2018, 165(16): A4027-A4033.

[81]

Sanchez B, Campodónico PR, Contreras R Gutmann’s donor and acceptor numbers for ionic liquids and deep eutectic solvents. Front Chem, 2022, 10: 861379.

[82]

Cao LS, Li D, Hu EY, et al. Solvation structure design for aqueous Zn metal batteries. J Am Chem Soc, 2020, 142(51): 21404-21409.

[83]

Feng DD, Cao FQ, Hou L, et al. Immunizing aqueous Zn batteries against dendrite formation and side reactions at various temperatures via electrolyte additives. Small, 2021, 17(42): e2103195.

[84]

Liu SL, Mao JF, Pang WK, et al. Tuning the electrolyte solvation structure to suppress cathode dissolution, water reactivity, and Zn dendrite growth in zinc-ion batteries. Adv Funct Mater, 2021, 31(38): 2104281.

[85]

Zhang H, Luo Z, Deng WT, et al. Interfacial reconstruction via electronegative sulfonated carbon dots in hybrid electrolyte for ultra-durable zinc battery. Chem Eng J, 2023, 461: 142105.

[86]

Wang FF, Lu HT, Zhu HB, et al. Mitigating the interfacial concentration gradient by negatively charged quantum dots toward dendrite-free Zn anodes. Energy Storage Mater, 2023, 58: 215-221.

[87]

Wu HY, Yan W, Xing YM et al (2023) Tailoring the interfacial electric field using silicon nanoparticles for stable zinc-ion batteries. Adv Funct Mater 2213882

[88]

Abdulla J, Cao J, Zhang DD, et al. Elimination of zinc dendrites by graphene oxide electrolyte additive for zinc-ion batteries. ACS Appl Energy Mater, 2021, 4(5): 4602-4609.

[89]

Cao J, Zhang DD, Gu C, et al. Manipulating crystallographic orientation of zinc deposition for dendrite-free zinc ion batteries. Adv Energy Mater, 2021, 11(29): 2101299.

[90]

Sun KEK, Hoang TKA, Doan TNL, et al. Highly sustainable zinc anodes for a rechargeable hybrid aqueous battery. Chem A Eur J, 2017, 24(7): 1667-1673.

[91]

Chen XH, Li M, Li Q et al (2022) Realizing highly reversible zinc anode via controlled-current pre-deposition. Energy Environ Mater 12480

[92]

Yuan D, Zhao J, Ren H, et al. Anion texturing towards dendrite-free Zn anode for aqueous rechargeable batteries. Angew Chem Int Ed, 2020, 60(13): 7213-7219.

[93]

Wei TT, Ren YK, Wang YF, et al. Addition of dioxane in electrolyte promotes (002)-textured zinc growth and suppressed side reactions in zinc-ion batteries. ACS Nano, 2023, 17(4): 3765-3775.

[94]

Wan JD, Wang R, Liu ZX, et al. A double-functional additive containing nucleophilic groups for high-performance Zn-ion batteries. ACS Nano, 2023, 17(2): 1610-1621.

[95]

Zhang Q, Luan JY, Fu L, et al. The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew Chem Int Ed Engl, 2019, 58(44): 15841-15847.

[96]

Zhou TY, Mu YL, Chen L, et al. Toward stable zinc aqueous rechargeable batteries by anode morphology modulation via polyaspartic acid additive. Energy Storage Mater, 2022, 45: 777-785.

[97]

Wu HY, Gu XX, Huang P, et al. Polyoxometalate driven dendrite-free zinc electrodes with synergistic effects of cation and anion cluster regulation. J Mater Chem A, 2021, 9(11): 7025-7033.

[98]

Guo XX, Zhang ZY, Li JW, et al. Alleviation of dendrite formation on zinc anodes via electrolyte additives. ACS Energy Lett, 2021, 6(2): 395-403.

[99]

Xie KX, Ren KX, Wang QH, et al. in situ construction of zinc-rich polymeric solid–electrolyte interface for high-performance zinc anode. eScience, 2023, 3(4): 100153.

[100]

Wei CL, Tan LW, Zhang YC, et al. Metal-organic frameworks and their derivatives in stable Zn metal anodes for aqueous Zn-ion batteries. ChemPhysMater, 2022, 1(4): 252-263.

[101]

Gopalakrishnan M, Ganesan S, Nguyen MT, et al. Critical roles of metal–organic frameworks in improving the Zn anode in aqueous zinc-ion batteries. Chem Eng J, 2023, 457: 141334.

[102]

Liu XQ, Yang F, Xu W, et al. Zeolitic imidazolate frameworks as Zn2+ modulation layers to enable dendrite-free Zn anodes. Adv Sci, 2020, 7(21): 2002173.

[103]

Li LH, Yang HH, Peng H et al (2023) Covalent organic frameworks in aqueous zinc-ion batteries. Chem A Eur J e202302502

[104]

Zhu DY, Xu GY, Barnes M, et al. Covalent organic frameworks for batteries. Adv Funct Mater, 2021, 31(32): 2100505.

[105]

Aupama V, Kao-ian W, Sangsawang J, et al. Stabilizing a zinc anode via a tunable covalent organic framework-based solid electrolyte interphase. Nanoscale, 2023, 15(20): 9003-9013.

[106]

Zhao J, Ying YP, Wang GL, et al. Covalent organic framework film protected zinc anode for highly stable rechargeable aqueous zinc-ion batteries. Energy Storage Mater, 2022, 48: 82-89.

[107]

Tangthuam P, Kao-ian W, Sangsawang J, et al. Carboxymethyl cellulose as an artificial solid electrolyte interphase for stable zinc-based anodes in aqueous electrolytes. Mater Sci Energy Technol, 2023, 6: 417-428.

[108]

Wang N, Wan H, Duan J, et al. A review of zinc-based battery from alkaline to acid. Mater Today Adv, 2021, 11: 100149.

[109]

Otani T, Nagata M, Fukunaka Y, et al. Morphological evolution of mossy structures during the electrodeposition of zinc from an alkaline zincate solution. Electrochim Acta, 2016, 206: 366-373.

[110]

Fang GZ, Zhou JA, Pan AQ, et al. Recent advances in aqueous zinc-ion batteries. ACS Energy Lett, 2018, 3(10): 2480-2501.

[111]

Mainar AR, Leonet O, Bengoechea M, et al. Alkaline aqueous electrolytes for secondary zinc-air batteries: an overview. Int J Energy Res, 2016, 40(8): 1032-1049.

[112]

Xu CJ, Li BH, Du HD, et al. Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew Chem Int Ed Engl, 2012, 51(4): 933-935.

[113]

Huang S, Zhu JC, Tian JL, et al. Recent progress in the electrolytes of aqueous zinc-ion batteries. Chemistry, 2019, 25(64): 14480-14494.

[114]

Konarov A, Voronina N, Jo JH, et al. Present and future perspective on electrode materials for rechargeable zinc-ion batteries. ACS Energy Lett, 2018, 3(10): 2620-2640.

[115]

Wang F, Borodin O, Gao T, et al. Highly reversible zinc metal anode for aqueous batteries. Nat Mater, 2018, 17(6): 543-549.

[116]

Zhang C, Holoubek J, Wu XY, et al. A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode. Chem Commun, 2018, 54(100): 14097-14099.

[117]

Lu HF, Zhang D, Jin QZ, et al. Gradient electrolyte strategy achieving long-life zinc anodes. Adv Mater, 2023, 35(26): e2300620.

[118]

Liu H, Cheng XB, Huang JQ, et al. Controlling dendrite growth in solid-state electrolytes. ACS Energy Lett, 2020, 5(3): 833-843.

[119]

Wang ZQ, Hu JT, Han L, et al. A MOF-based single-ion Zn2+ solid electrolyte leading to dendrite-free rechargeable Zn batteries. Nano Energy, 2019, 56: 92-99.

[120]

Chen Z, Li XL, Wang DH, et al. Grafted MXene/polymer electrolyte for high performance solid zinc batteries with enhanced shelf life at low/high temperatures. Energy Environ Sci, 2021, 14(6): 3492-3501.

[121]

Xing ZY, Xu GF, Xie XS, et al. Highly reversible zinc-ion battery enabled by suppressing vanadium dissolution through inorganic Zn2+ conductor electrolyte. Nano Energy, 2021, 90: 106621.

[122]

Park S, Kristanto I, Jung GY, et al. A single-ion conducting covalent organic framework for aqueous rechargeable Zn-ion batteries. Chem Sci, 2020, 11(43): 11692-11698.

[123]

Lin XD, Zhou GD, Liu JP, et al. Bifunctional hydrated gel electrolyte for long-cycling Zn-ion battery with NASICON-type cathode. Adv Funct Mater, 2021, 31(42): 2105717.

[124]

Wu K, Huang JH, Yi J, et al. Recent advances in polymer electrolytes for zinc ion batteries: mechanisms, properties, and perspectives. Adv Energy Mater, 2020, 10(12): 1903977.

[125]

Malagurski I, Levic S, Pantic M, et al. Synthesis and antimicrobial properties of Zn-mineralized alginate nanocomposites. Carbohydr Polym, 2017, 165: 313-321.

[126]

Mo FN, Chen Z, Liang GJ, et al. Zwitterionic sulfobetaine hydrogel electrolyte building separated positive/negative ion migration channels for aqueous Zn-MnO2 batteries with superior rate capabilities. Adv Energy Mater, 2020, 10(16): 2000035.

[127]

Zhang HD, Gan XT, Song ZP, et al. Amphoteric cellulose-based double-network hydrogel electrolyte toward ultra-stable Zn anode. Angew Chem Int Ed, 2023, 62(13): e202217833.

[128]

Tang Y, Liu CX, Zhu HR, et al. Ion-confinement effect enabled by gel electrolyte for highly reversible dendrite-free zinc metal anode. Energy Storage Mater, 2020, 27: 109-116.

[129]

Sun M, Ji GC, Zheng JP A hydrogel electrolyte with ultrahigh ionic conductivity and transference number benefit from Zn2+ “highways” for dendrite-free Zn-MnO2 battery. Chem Eng J, 2023, 463: 142535.

[130]

Wang DH, Li HF, Liu ZX, et al. A nanofibrillated cellulose/polyacrylamide electrolyte-based flexible and sewable high-performance Zn–MnO2 battery with superior shear resistance. Small, 2018, 14(51): e1803978.

[131]

Zhang SL, Yu NS, Zeng S, et al. An adaptive and stable bio-electrolyte for rechargeable Zn-ion batteries. J Mater Chem A, 2018, 6(26): 12237-12243.

[132]

Mo FN, Li HF, Pei ZX, et al. A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes. Sci Bull, 2018, 63(16): 1077-1086.

[133]

Huang Y, Zhang JY, Liu JW, et al. Flexible and stable quasi-solid-state zinc ion battery with conductive guar gum electrolyte. Mater Today Energy, 2019, 14: 100349.

[134]

Wang FF, Zhang JP, Lu HT, et al. Production of gas-releasing electrolyte-replenishing Ah-scale zinc metal pouch cells with aqueous gel electrolyte. Nat Commun, 2023, 14(1): 4211.

[135]

Wu K, Cui J, Yi J, et al. Biodegradable gel electrolyte suppressing water-induced issues for long-life zinc metal anodes. ACS Appl Mater Interfaces, 2022, 14(30): 34612-34619.

[136]

Abbasi A, Xu YL, Abouzari-Lotf E, et al. Phosphonated graphene oxide-modified polyacrylamide hydrogel electrolytes for solid-state zinc-ion batteries. Electrochim Acta, 2022, 435: 141365.

AI Summary AI Mindmap
PDF

208

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/