Progress in Electrolyte Engineering of Aqueous Batteries in a Wide Temperature Range

Lingjun He , Chuyuan Lin , Peixun Xiong , Hui Lin , Wenbin Lai , Jingran Zhang , Fuyu Xiao , Liren Xiao , Qingrong Qian , Qinghua Chen , Lingxing Zeng

Transactions of Tianjin University ›› 2023, Vol. 29 ›› Issue (5) : 321 -346.

PDF
Transactions of Tianjin University ›› 2023, Vol. 29 ›› Issue (5) : 321 -346. DOI: 10.1007/s12209-023-00366-x
Review

Progress in Electrolyte Engineering of Aqueous Batteries in a Wide Temperature Range

Author information +
History +
PDF

Abstract

Aqueous rechargeable batteries are safe and environmentally friendly and can be made at a low cost; as such, they are attracting attention in the field of energy storage. However, the temperature sensitivity of aqueous batteries hinders their practical application. The solvent water freezes at low temperatures, and there is a reduction in ionic conductivity, whereas it evaporates rapidly at high temperatures, which causes increased side reactions. This review discusses recent progress in improving the performance of aqueous batteries, mainly with respect to electrolyte engineering and the associated strategies employed to achieve such improvements over a wide temperature domain. The review focuses on five electrolyte engineering (aqueous high-concentration electrolytes, organic electrolytes, quasi-solid/solid electrolytes, hybrid electrolytes, and eutectic electrolytes) and investigates the mechanisms involved in reducing the solidification point and boiling point of the electrolyte and enhancing the extreme-temperature electrochemical performance. Finally, the prospect of further improving the wide temperature range performance of aqueous rechargeable batteries is presented.

Keywords

Aqueous batteries / Electrolyte engineering / Wide temperature range / Hydrogen bond

Cite this article

Download citation ▾
Lingjun He, Chuyuan Lin, Peixun Xiong, Hui Lin, Wenbin Lai, Jingran Zhang, Fuyu Xiao, Liren Xiao, Qingrong Qian, Qinghua Chen, Lingxing Zeng. Progress in Electrolyte Engineering of Aqueous Batteries in a Wide Temperature Range. Transactions of Tianjin University, 2023, 29(5): 321-346 DOI:10.1007/s12209-023-00366-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hou WH, Lu Y, Ou Y, et al. Recent advances in electrolytes for high-voltage cathodes of lithium-ion batteries. Trans Tianjin Univ, 2023, 29(2): 120-135.

[2]

Wang L, Menakath A, Han F, et al. Identifying the components of the solid-electrolyte interphase in Li-ion batteries. Nat Chem, 2019, 11(9): 789-796.

[3]

Armand M, Tarascon JM Building better batteries. Nature, 2008, 451(7179): 652-657.

[4]

Dunn B, Kamath H, Tarascon JM Electrical energy storage for the grid: a battery of choices. Science, 2011, 334(6058): 928-935.

[5]

Luo F, Feng X, Zeng L, et al. In situ simultaneous encapsulation of defective MoS2 nanolayers and sulfur nanodots into SPAN fibers for high rate sodium-ion batteries. Chem Eng J, 2021, 404: 126430.

[6]

Wang M, Meng Y, Li K, et al. Toward dendrite-free and anti-corrosion Zn anodes by regulating a bismuth-based energizer. eScience, 2022, 2(5): 509-517.

[7]

Yao YX, Yao N, Zhou XR, et al. Ethylene-carbonate-free electrolytes for rechargeable Li-ion pouch cells at sub-freezing temperatures. Adv Mater, 2022, 34(45): e2206448.

[8]

Liu Z, Huang Y, Huang Y, et al. Voltage issue of aqueous rechargeable metal-ion batteries. Chem Soc Rev, 2020, 49(1): 180-232.

[9]

Zhang X, Li J, Ao H, et al. Appropriately hydrophilic/hydrophobic cathode enables high-performance aqueous zinc-ion batteries. Energy Storage Mater, 2020, 30: 337-345.

[10]

Zhang S, Li S, Lu Y Designing safer lithium-based batteries with nonflammable electrolytes: a review. eScience, 2021, 1(2): 163-177.

[11]

Wang J, Wang B, Lu B Nature of novel 2D van der Waals heterostructures for superior potassium ion batteries. Adv Energy Mater, 2020, 10(24): 2000884.

[12]

Huang Y, Li Z, Pei Z, et al. Solid-state rechargeable Zn/NiCo and Zn-air batteries with ultralong lifetime and high capacity: the role of a sodium polyacrylate hydrogel electrolyte. Adv Energy Mater, 2018, 8(31): 1802288.

[13]

Wang H, Liu J, He J, et al. Pseudo-concentrated electrolytes for lithium metal batteries. eScience, 2022, 2(5): 557-565.

[14]

Huang J, Guo Z, Ma Y, et al. Recent progress of rechargeable batteries using mild aqueous electrolytes. Small Meth, 2019, 3(1): 1800272.

[15]

Wang D, Zhao Y, Liang G, et al. A zinc battery with ultra-flat discharge plateau through phase transition mechanism. Nano Energy, 2020, 71: 104583.

[16]

Zhang Y, Zhao L, Liang Y, et al. Effect of electrolyte anions on the cycle life of a polymer electrode in aqueous batteries. eScience, 2022, 2(1): 110-115.

[17]

Li H, Ma L, Han C, et al. Advanced rechargeable zinc-based batteries: recent progress and future perspectives. Nano Energy, 2019, 62: 550-587.

[18]

Fang L, Cai Z, Ding Z, et al. Skin-inspired surface-microstructured tough hydrogel electrolytes for stretchable supercapacitors. ACS Appl Mater Interfaces, 2019, 11(24): 21895-21903.

[19]

Ji X A perspective of ZnCl2 electrolytes: the physical and electrochemical properties. eScience, 2022, 1(2): 99-107.

[20]

Xu CX, Jiang J Electrolytes speed up development of zinc batteries. Rare Met, 2021, 40(4): 749-751.

[21]

Jiang L, Lu Y, Zhao C, et al. Building aqueous K-ion batteries for energy storage. Nat Energy, 2019, 4(6): 495-503.

[22]

Hubble D, Brown DE, Zhao Y, et al. Liquid electrolyte development for low-temperature lithium-ion batteries. Energy Environ Sci, 2022, 15(2): 550-578.

[23]

Zhu K, Sun Z, Li Z, et al. Design strategies and recent advancements for low-temperature aqueous rechargeable energy storage. Adv Energy Mater, 2023, 13(8): 2203708.

[24]

Zhang Q, Ma Y, Lu Y, et al. Modulating electrolyte structure for ultralow temperature aqueous zinc batteries. Nat Commun, 2020, 11(1): 4463.

[25]

Nian Q, Wang J, Liu S, et al. Aqueous batteries operated at −50 ℃. Angew Chem Int Ed, 2019, 58(47): 16994-16999.

[26]

Feng Y, Zhou L, Ma H, et al. Challenges and advances in wide-temperature rechargeable lithium batteries. Energy Environ Sci, 2022, 15(5): 1711-1759.

[27]

Xu K Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev, 2004, 104(10): 4303-4417.

[28]

Hou J, Yang M, Wang D, et al. Lithium-ion batteries: fundamentals and challenges of lithium ion batteries at temperatures between −40 and 60 ℃. Adv Energy Mater, 2020, 10(18): 2070079.

[29]

Dong X, Wang YG, Xia Y Promoting rechargeable batteries operated at low temperature. Acc Chem Res, 2021, 54(20): 3883-3894.

[30]

Wang M, Li T, Yin Y, et al. A −60 ℃ low-temperature aqueous lithium ion-bromine battery with high power density enabled by electrolyte design. Adv Energy Mater, 2022, 12(25): 2200728.

[31]

Shang Y, Chen S, Chen N, et al. A universal strategy for high-voltage aqueous batteries via lone pair electrons as the hydrogen bond-breaker. Energy Environ Sci, 2022, 15(6): 2653-2663.

[32]

Zhang X, Chen J, Xu Z, et al. Aqueous electrolyte with moderate concentration enables high-energy aqueous rechargeable lithium ion battery for large scale energy storage. Energy Storage Mater, 2022, 46: 147-154.

[33]

Lu C, Chen X All-temperature flexible supercapacitors enabled by antifreezing and thermally stable hydrogel electrolyte. Nano Lett, 2020, 20(3): 1907-1914.

[34]

Wang H, Chen Z, Ji Z, et al. Temperature adaptability issue of aqueous rechargeable batteries. Mater Today Energy, 2021, 19: 100577.

[35]

Li F, Hu X Zinc metal energy storage devices under extreme conditions of low temperatures. Batter Supercaps, 2021, 4(3): 389-406.

[36]

Ramanujapuram A, Yushin G Understanding the exceptional performance of lithium-ion battery cathodes in aqueous electrolytes at subzero temperatures. Adv Energy Mater, 2018, 8(35): 1802624.

[37]

Liu Z, Luo X, Qin L, et al. Progress and prospect of low-temperature zinc metal batteries. Adv Powder Mater, 2022, 1(2): 100011.

[38]

Tamtögl A, Bahn E, Sacchi M, et al. Motion of water monomers reveals a kinetic barrier to ice nucleation on graphene. Nat Commun, 2021, 12(1): 3120.

[39]

Deng T, Zhang W, Zhang H, et al. Anti-freezing aqueous electrolyte for high-performance Co(OH)2 supercapacitors at −30 ℃. Energy Technol, 2018, 6(4): 605-612.

[40]

Ma L, Li N, Long C, et al. Achieving both high voltage and high capacity in aqueous zinc-ion battery for record high energy density. Adv Funct Mater, 2019, 29(46): 1906142.

[41]

Zhang H, Liu X, Li H, et al. High-voltage operation of a V2O5 cathode in a concentrated gel polymer electrolyte for high-energy aqueous zinc batteries. ACS Appl Mater Interfaces, 2020, 12(13): 15305-15312.

[42]

Lukatskaya MR, Feldblyum JI, Mackanic DG, et al. Concentrated mixed cation acetate “water-in-salt” solutions as green and low-cost high voltage electrolytes for aqueous batteries. Energy Environ Sci, 2018, 11(10): 2876-2883.

[43]

Zhang Q, Xia K, Ma Y, et al. Chaotropic anion and fast-kinetics cathode enabling low-temperature aqueous Zn batteries. ACS Energy Lett, 2021, 6(8): 2704-2712.

[44]

Liang G, Gan Z, Wang X, et al. Reconstructing vanadium oxide with anisotropic pathways for a durable and fast aqueous K-ion battery. ACS Nano, 2021, 15(11): 17717-17728.

[45]

Jiang L, Liu L, Yue J, et al. High-voltage aqueous Na-ion battery enabled by inert-cation-assisted water-in-salt electrolyte. Adv Mater, 2020, 32(2): e1904427.

[46]

Yue J, Lin L, Jiang L, et al. Interface concentrated-confinement suppressing cathode dissolution in water-in-salt electrolyte. Adv Energy Mater, 2020, 10(36): 2000665.

[47]

Becker M, Kühnel RS, Battaglia C Water-in-salt electrolytes for aqueous lithium-ion batteries with liquidus temperatures below −10 ℃. Chem Commun, 2019, 55(80): 12032-12035.

[48]

Reber D, Kühnel RS, Battaglia C Suppressing crystallization of water-in-salt electrolytes by asymmetric anions enables low-temperature operation of high-voltage aqueous batteries. ACS Mater Lett, 2019, 1(1): 44-51.

[49]

Sun T, Yuan X, Wang K, et al. An ultralow-temperature aqueous zinc-ion battery. J Mater Chem A, 2021, 9(11): 7042-7047.

[50]

Borodin O, Self J, Persson KA, et al. Uncharted waters: super-concentrated electrolytes. Joule, 2020, 4(1): 69-100.

[51]

Yamada Y Concentrated battery electrolytes: developing new functions by manipulating the coordination states. Bull Chem Soc Jpn, 2020, 93(1): 109-118.

[52]

Song M, Tan H, Chao D, et al. Recent advances in Zn-ion batteries. Adv Funct Mater, 2018, 28(41): 1802564.

[53]

Yamada Y, Yaegashi M, Abe T, et al. A superconcentrated ether electrolyte for fast-charging Li-ion batteries. Chem Commun, 2013, 49(95): 11194-11196.

[54]

Zhang H, Liu X, Li H, et al. Challenges and strategies for high-energy aqueous electrolyte rechargeable batteries. Angew Chem Int Ed, 2021, 60(2): 598-616.

[55]

Chao D, Qiao SZ Toward high-voltage aqueous batteries: super- or low-concentrated electrolyte?. Joule, 2020, 4(9): 1846-1851.

[56]

Yu M, Lu Y, Zheng H, et al. New insights into the operating voltage of aqueous supercapacitors. Chem-Eur J, 2018, 24(15): 3639-3649.

[57]

Sui X, Guo H, Chen P, et al. Zwitterionic osmolyte-based hydrogels with antifreezing property, high conductivity, and stable flexibility at subzero temperature. Adv Funct Mater, 2019, 30(7): 1907986.

[58]

Wang M, Wang Q, Ding X, et al. The prospect and challenges of sodium-ion batteries for low-temperature conditions. Interdiscipl Mater, 2022, 1(3): 373-395.

[59]

Huang J, Dong X, Wang N, et al. Building low-temperature batteries: non-aqueous or aqueous electrolyte?. Curr Opin Electrochem, 2022, 33: 100949.

[60]

Zhou W, Chen J, Chen M, et al. An environmentally adaptive quasi-solid-state zinc-ion battery based on magnesium vanadate hydrate with commercial-level mass loading and anti-freezing gel electrolyte. J Mater Chem A, 2020, 8(17): 8397-8409.

[61]

Shi Y, Wang R, Bi S, et al. An anti-freezing hydrogel electrolyte for flexible zinc-ion batteries operating at –70 ℃. Adv Funct Mater, 2023, 33(24): 2214546.

[62]

Hu Y, Shi R, Ren Y, et al. A “two-in-one” strategy for flexible aqueous batteries operated at –80 ℃. Adv Funct Mater, 2022, 32(27): 2203081.

[63]

Liu T, Liu KT, Wang J, et al. Achievement of a polymer-free KAc gel electrolyte for advanced aqueous K-ion battery. Energy Storage Mater, 2021, 41: 133-140.

[64]

Mo F, Li Q, Liang G, et al. A self-healing crease-free supramolecular all-polymer supercapacitor. Adv Sci, 2021, 8(12): 2100072.

[65]

Fu Q, Hao S, Meng L, et al. Engineering self-adhesive polyzwitterionic hydrogel electrolytes for flexible zinc-ion hybrid capacitors with superior low-temperature adaptability. ACS Nano, 2021, 15(11): 18469-18482.

[66]

Fu Q, Hao S, Zhang X, et al. All-round supramolecular zwitterionic hydrogel electrolytes enabling environmentally adaptive dendrite-free aqueous zinc ion capacitors. Energy Environ Sci, 2023, 16(3): 1291-1311.

[67]

Gong JP, Katsuyama Y, Kurokawa T, et al. Double-network hydrogels with extremely high mechanical strength. Adv Mater, 2003, 15(14): 1155-1158.

[68]

Sun N, Lu F, Yu Y, et al. Alkaline double-network hydrogels with high conductivities, superior mechanical performances, and antifreezing properties for solid-state zinc-air batteries. ACS Appl Mater Interfaces, 2020, 12(10): 11778-11788.

[69]

Zhang Y, Qin H, Alfred M, et al. Reaction modifier system enable double-network hydrogel electrolyte for flexible zinc-air batteries with tolerance to extreme cold conditions. Energy Storage Mater, 2021, 42: 88-96.

[70]

Zhao Y, Chen Z, Mo F, et al. Aqueous rechargeable metal-ion batteries working at subzero temperatures. Adv Sci, 2020, 8(1): 2002590.

[71]

Zhou D, Chen F, Handschuh-Wang S, et al. Biomimetic extreme-temperature- and environment-adaptable hydrogels. ChemPhysChem, 2019, 20(17): 2139-2154.

[72]

Zheng J, Engelhard MH, Mei D, et al. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat Energy, 2017, 2: 17012.

[73]

Song M, Zhong CL Achieving both high reversible and stable Zn anode by a practical glucose electrolyte additive toward high-performance Zn-ion batteries. Rare Met, 2022, 41(2): 356-360.

[74]

Ren HT, Zhang ZQ, Zhang JZ, et al. Improvement of stability and solid-state battery performances of annealed 70Li2S–30P2S5 electrolytes by additives. Rare Met, 2022, 41: 106-114.

[75]

Tang X, Zhang WC, Cao LY Multifunctional high-fluorine-content molecule with high dipole moment as electrolyte additive for high performance lithium metal batteries. Rare Met, 2022, 41(3): 726-729.

[76]

Jin Y, Han KS, Shao Y, et al. Stabilizing zinc anode reactions by polyethylene oxide polymer in mild aqueous electrolytes. Adv Funct Mater, 2020, 30(43): 2003932.

[77]

Han W, Ardhi R, Liu GC Dual impact of superior SEI and separator wettability to inhibit lithium dendrite growth. Rare Met, 2022, 41(2): 353-355.

[78]

Guo Y, Liu J, Yang Q, et al. Metal-tuned acetylene linkages in hydrogen substituted graphdiyne boosting the electrochemical oxygen reduction. Small, 2020, 16(10): e1907341.

[79]

Xu Z, Yang J, Li H, et al. Electrolytes for advanced lithium ion batteries using silicon-based anodes. J Mater Chem A, 2019, 7(16): 9432-9446.

[80]

Sun P, Ma L, Zhou W, et al. Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew Chem Int Ed, 2021, 60(33): 18247-18255.

[81]

Ma Z, Chen J, Vatamanu J, et al. Expanding the low-temperature and high-voltage limits of aqueous lithium-ion battery. Energy Storage Mater, 2022, 45: 903-910.

[82]

Xiong P, Kang Y, Yao N, et al. Zn-ion transporting, in situ formed robust solid electrolyte interphase for stable zinc metal anodes over a wide temperature range. ACS Energy Lett, 2023, 8(3): 1613-1625.

[83]

Tron A, Jeong S, Park YD, et al. Aqueous lithium-ion battery of nano-LiFePO4 with antifreezing agent of ethyleneglycol for low-temperature operation. ACS Sustain Chem Eng, 2019, 7(17): 14531-14538.

[84]

Lin C, Yang X, Xiong P, et al. High-rate, large capacity, and long life dendrite-free Zn metal anode enabled by trifunctional electrolyte additive with a wide temperature range. Adv Sci, 2022, 9(21): e2201433.

[85]

Wang A, Zhou W, Huang A, et al. Developing improved electrolytes for aqueous zinc-ion batteries to achieve excellent cyclability and antifreezing ability. J Colloid Interface Sci, 2021, 586: 362-370.

[86]

Chen J, Vatamanu J, Xing L, et al. Improving electrochemical stability and low-temperature performance with water/acetonitrile hybrid electrolytes. Adv Energy Mater, 2020, 10(3): 1902654.

[87]

Ma Q, Gao R, Liu Y, et al. Regulation of outer solvation shell toward superior low-temperature aqueous zinc-ion batteries. Adv Mater, 2022, 34(49): e2207344.

[88]

Chang N, Li T, Li R, et al. An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices. Energy Environ Sci, 2020, 13(10): 3527-3535.

[89]

Cai S, Chu X, Liu C, et al. Water-salt oligomers enable supersoluble electrolytes for high-performance aqueous batteries. Adv Mater, 2021, 33(13): e2007470.

[90]

Yang Y, Yang Y, Cao Y, et al. Anti-freezing, resilient and tough hydrogels for sensitive and large-range strain and pressure sensors. Chem Eng J, 2021, 403: 126431.

[91]

Ding Y, Zhong X, Yuan C, et al. Sodium alginate binders for bivalency aqueous batteries. ACS Appl Mater Interfaces, 2021, 13(17): 20681-20688.

[92]

Ahn SM, Suk J, Kim DY, et al. High-performance lithium-oxygen battery electrolyte derived from optimum combination of solvent and lithium salt. Adv Sci, 2017, 4(10): 1700235.

[93]

Rong JZ, Cai TX, Bai YZ, et al. A free-sealed high-voltage aqueous polymeric sodium battery enabling operation at −25 ℃. Cell Rep Phys Sci, 2022, 3(3): 100805.

[94]

Liu J, Yang C, Chi X, et al. Water/sulfolane hybrid electrolyte achieves ultralow-temperature operation for high-voltage aqueous lithium-ion batteries. Adv Funct Mater, 2022, 32(1): 2106811.

[95]

Zhao Z, Yin J, Yin J, et al. End-capping of hydrogen bonds: a strategy for blocking the proton conduction pathway in aqueous electrolytes. Energy Storage Mater, 2023, 55: 479-489.

[96]

Dong Y, Zhang N, Wang Z, et al. Cell-nucleus structured electrolyte for low-temperature aqueous zinc batteries. J Energy Chem, 2023, 83: 324-332.

[97]

Yao N, Chen X, Fu ZH, et al. Applying classical, ab initio, and machine-learning molecular dynamics simulations to the liquid electrolyte for rechargeable batteries. Chem Rev, 2022, 122(12): 10970-11021.

[98]

Sun T, Zheng S, Du H, et al. Synergistic effect of cation and anion for low-temperature aqueous zinc-ion battery. Nanomicro Lett, 2021, 13(1): 204.

[99]

Zhu K, Sun Z, Jin T, et al. Tailoring pure inorganic electrolyte for aqueous sodium-ion batteries operating at –60 ℃. Batter Supercaps, 2022, 5(12): e202200308.

[100]

Zhu K, Li Z, Sun Z, et al. Inorganic electrolyte for low-temperature aqueous sodium ion batteries. Small, 2022, 18(14): e2107662.

[101]

Du H, Wang K, Sun T, et al. Improving zinc anode reversibility by hydrogen bond in hybrid aqueous electrolyte. Chem Eng J, 2022, 427: 131705.

[102]

Liu S, Mao J, Pang WK, et al. Tuning the electrolyte solvation structure to suppress cathode dissolution, water reactivity, and Zn dendrite growth in zinc-ion batteries. Adv Funct Mater, 2021, 31(38): 2104281.

[103]

Ahmed F, Rahman MM, Chandra Sutradhar S, et al. Novel divalent organo-lithium salts with high electrochemical and thermal stability for aqueous rechargeable Li-Ion batteries. Electrochim Acta, 2019, 298: 709-716.

[104]

Jin D, Choi S, Jang W, et al. Bismuth islands for low-temperature sodium-beta alumina batteries. ACS Appl Mater Interfaces, 2019, 11(3): 2917-2924.

[105]

Sui Y, Ji X Anticatalytic strategies to suppress water electrolysis in aqueous batteries. Chem Rev, 2021, 121(11): 6654-6695.

[106]

Zhang Y, Xu J, Li Z, et al. All-climate aqueous Na-ion batteries using water-in-salt electrolyte. Sci Bull, 2022, 67(2): 161-170.

[107]

Yan L, Qi YE, Dong X et al (2021) Ammonium-ion batteries with a wide operating temperature window from −40 to 80℃. eScience 1(2):212–218

[108]

Xie J, Liang Z, Lu YC Molecular crowding electrolytes for high-voltage aqueous batteries. Nat Mater, 2020, 19(9): 1006-1011.

[109]

Wang J, Yang Y, Wang Y, et al. Working aqueous Zn metal batteries at 100 ℃. ACS Nano, 2022, 16(10): 15770-15778.

[110]

Gu C, Xie XQ, Liang Y, et al. Small molecule-based supramolecular-polymer double-network hydrogel electrolytes for ultra-stretchable and waterproof Zn-air batteries working from −50 to 100 ℃. Energy Environ Sci, 2021, 14(8): 4451-4462.

[111]

Zheng J, Yang Y, Li W, et al. Novel flame retardant rigid spirocyclic biphosphate based copolymer gel electrolytes for sodium ion batteries with excellent high-temperature performance. J Mater Chem A, 2020, 8(43): 22962-22968.

[112]

Hyun WJ, de Moraes ACM, Lim JM, et al. High-modulus hexagonal boron nitride nanoplatelet gel electrolytes for solid-state rechargeable lithium-ion batteries. ACS Nano, 2019, 13(8): 9664-9672.

[113]

Jiang Y, Ma K, Sun M, et al. All-climate stretchable dendrite-free Zn-ion hybrid supercapacitors enabled by hydrogel electrolyte engineering. Energy Environ Mater, 2023, 6(2): e12357.

[114]

Hou X, Pollard TP, He X, et al. “Water-in-eutectogel” electrolytes for quasi-solid-state aqueous lithium-ion batteries. Adv Energy Mater, 2022, 12(23): 2200401.

[115]

Lu H, Hu J, Wang L, et al. Multi-component crosslinked hydrogel electrolyte toward dendrite-free aqueous Zn ion batteries with high temperature adaptability. Adv Funct Mater, 2022, 32(19): 2112540.

[116]

Zhou J, Yuan H, Li J, et al. Highly reversible and stable Zn metal anode under wide temperature conditions enabled by modulating electrolyte chemistry. Chem Eng J, 2022, 442: 136218.

[117]

Li X, Wang H, Sun X, et al. Flexible wide-temperature zinc-ion battery enabled by an ethylene glycol-based organohydrogel electrolyte. ACS Appl Energy Mater, 2021, 4(11): 12718-12727.

[118]

Zhao M, Lv Y, Zhao S, et al. Simultaneously stabilizing both electrodes and electrolytes by a self-separating organometallics interface for high-performance zinc-ion batteries at wide temperatures. Adv Mater, 2022, 34(49): e2206239.

[119]

Wang Y, Wang Z, Pang WK, et al. Solvent control of water O–H bonds for highly reversible zinc ion batteries. Nat Commun, 2023, 14(1): 2720.

[120]

Han D, Cui C, Zhang K, et al. A non-flammable hydrous organic electrolyte for sustainable zinc batteries. Nat Sustain, 2022, 5(3): 205-213.

[121]

Sun Y, Zhang Y, Xu Z, et al. Dilute hybrid electrolyte for low-temperature aqueous sodium-ion batteries. Chemsuschem, 2022, 15(23): e202201362.

[122]

Sun T, Nian Q, Du H, et al. Aqueous proton battery stably operates in mild electrolyte and low-temperature conditions. J Mater Chem A, 2022, 10(33): 17288-17296.

[123]

Wang N, Yang Y, Qiu X, et al. Stabilized rechargeable aqueous zinc batteries using ethylene glycol as water blocker. Chemsuschem, 2020, 13(20): 5556-5564.

[124]

Hao J, Yuan L, Ye C, et al. Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew Chem Int Ed, 2021, 60(13): 7366-7375.

[125]

Wang J, Zhu Q, Li F, et al. Low-temperature and high-rate Zn metal batteries enabled by mitigating Zn2+ concentration polarization. Chem Eng J, 2022, 433: 134589.

[126]

Deng W, Zhou Z, Li Y, et al. High-capacity layered magnesium vanadate with concentrated gel electrolyte toward high-performance and wide-temperature zinc-ion battery. ACS Nano, 2020, 14(11): 15776-15785.

[127]

Wang H, Liu J, Wang J, et al. Concentrated hydrogel electrolyte-enabled aqueous rechargeable NiCo// Zn battery working from –20 to 50 ℃. ACS Appl Mater Interfaces, 2019, 11(1): 49-55.

[128]

Chen M, Chen J, Zhou W, et al. Realizing an all-round hydrogel electrolyte toward environmentally adaptive dendrite-free aqueous Zn–MnO2 batteries. Adv Mater, 2021, 33(9): e2007559.

[129]

Mo F, Liang G, Wang D, et al. Biomimetic organohydrogel electrolytes for high-environmental adaptive energy storage devices. EcoMat, 2019, 1(1): e12008.

[130]

Gu C, Xie XQ, Liang Y, et al. Small molecule-based supramolecular-polymer double-network hydrogel electrolytes for ultra-stretchable and waterproof Zn-air batteries working from −50 to 100 ℃. Energy Environ Sci, 2021, 14(8): 4451-4462.

[131]

Yesibolati N, Umirov N, Koishybay A, et al. High performance Zn/LiFePO4 aqueous rechargeable battery for large scale applications. Electrochim Acta, 2015, 152: 505-511.

[132]

Cao L, Li D, Soto FA, et al. Highly reversible aqueous zinc batteries enabled by zincophilic-zincophobic interfacial layers and interrupted hydrogen-bond electrolytes. Angew Chem Int Ed, 2021, 60(34): 18845-18851.

[133]

Wang N, Dong X, Wang B, et al. Zinc-organic battery with a wide operation-temperature window from –70 to 150 ℃. Angew Chem Int Ed, 2020, 59(34): 14577-14583.

[134]

Liu K, Liu Y, Lin D et al (2018) Materials for lithium-ion battery safety. Sci Adv 4(6):eaas9820

[135]

Yuan Z, Xiao F, Fang Y, et al. Defect engineering on VO2(B) nanoleaves/graphene oxide for the high performance of cathodes of zinc-ion batteries with a wide temperature range. J Power Sources, 2023, 559.

[136]

Yuan Z, Yang X, Lin C, et al. Progressive activation of porous vanadium nitride microspheres with intercalation-conversion reactions toward high performance over a wide temperature range for zinc-ion batteries. J Colloid Interface Sci, 2023, 640: 487-497.

[137]

Wang Y, Xiao F, Chen X, et al. Extraordinarily stable and wide-temperature range sodium/potassium-ion batteries based on 1D SnSe2-SePAN composite nanofibers. InfoMat, 2023, 5(10

[138]

Xiong P, Zhang Y, Zhang J, et al. Recent progress of artificial interfacial layers in aqueous Zn metal batteries. EnergyChem, 2022, 4(4

[139]

Lei Z, Zheng J, He X, et al. Defect-rich WS2–SPAN nanofibers for sodium/potassium-ion batteries: ultralong lifespans and wide-temperature workability. Inorg Chem Front, 2023, 10(4): 1187-1196.

AI Summary AI Mindmap
PDF

173

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/