Thermal and Electrical Properties of Liquid Metal Gallium During Phase Transition

Xizu Wang , Durga Venkata Maheswar Repaka , Ady Suwardi , Qiang Zhu , Jing Wu , Jianwei Xu

Transactions of Tianjin University ›› 2023, Vol. 29 ›› Issue (3) : 209 -215.

PDF
Transactions of Tianjin University ›› 2023, Vol. 29 ›› Issue (3) : 209 -215. DOI: 10.1007/s12209-023-00357-y
Research Article

Thermal and Electrical Properties of Liquid Metal Gallium During Phase Transition

Author information +
History +
PDF

Abstract

Liquid metal gallium has been widely used in numerous fields, from nuclear engineering, catalysts, and energy storage to electronics owing to its remarkable thermal and electrical properties along with low viscosity and nontoxicity. Compared with high-temperature liquid metals, room-temperature liquid metals, such as gallium (Ga), are emerging as promising alternatives for fabricating advanced energy storage devices, such as phase change materials, by harvesting the advantageous properties of their liquid state maintained without external energy input. However, the thermal and electrical properties of liquid metals at the phase transition are rather poorly studied, limiting their practical applications. In this study, we reported on the physical properties of the solid–liquid phase transition of Ga using a custom-designed, solid–liquid electrical and thermal measurement system. We observed that the electrical conductivity of Ga progressively decreases with an increase in temperature. However, the Seebeck coefficient of Ga increases from 0.2 to 2.1 µV/K, and thermal conductivity from 7.6 to 33 W/(K∙m). These electrical and thermal properties of Ga at solid–liquid phase transition would be useful for practical applications.

Keywords

Liquid metal / Gallium / Electrical conductivity / Thermal conductivity / Seebeck coefficients / Phase transition

Cite this article

Download citation ▾
Xizu Wang, Durga Venkata Maheswar Repaka, Ady Suwardi, Qiang Zhu, Jing Wu, Jianwei Xu. Thermal and Electrical Properties of Liquid Metal Gallium During Phase Transition. Transactions of Tianjin University, 2023, 29(3): 209-215 DOI:10.1007/s12209-023-00357-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ball P The Ingredients: a Guided tour of the elements, 2002 Oxford University Press

[2]

Greenwood NN, Earnshaw A Chemistry of the Elements, 1997 2 ScienceDirect (Elsevier) press

[3]

Lecoq de Boisbaudran Caractères chimiques et spectroscopiques d'un nouveau métal, le gallium, découvert dans une blende de la mine de Pierrefitte, vallée d'Argelès (Pyrénées). C R Hebd Seances Acad Sci, 1875, 81: 493-495.

[4]

Weeks ME The discovery of the elements. XV. Some elements predicted by Mendeleeff. J Chem Educ, 1932, 9(9): 1605.

[5]

Tang SY, Tabor C, Kalantar-Zadeh K, et al. Gallium liquid metal: the devil’s elixir. Annu Rev Mater Res, 2021, 51: 381-408.

[6]

Preston-Thomas H The international temperature scale of 1990 (ITS-90). Metrologia, 1990, 27(1): 3-10.

[7]

Spells KE The determination of the viscosity of liquid gallium over an extended range of temperature. Proc Phys Soc, 1936, 48(2): 299-311.

[8]

Züger O, Dürig U Atomic structure of the α-Ga(001) surface investigated by scanning tunneling microscopy: direct evidence for the existence of Ga2 molecules in solid gallium. Phys Rev B, 1992, 46(11): 7319-7321.

[9]

Surmann P, Zeyat H Voltammetric analysis using a self-renewable non-mercury electrode. Anal Bioanal Chem, 2005, 383(6): 1009-1013.

[10]

Tonazzini A, Mintchev S, Schubert B, et al. Variable stiffness fiber with self-healing capability. Adv Mater, 2016, 28(46): 10142-10148.

[11]

Ilyas N, Cook A, Tabor CE Designing liquid metal interfaces to enable next generation flexible and reconfigurable electronics. Adv Mater Interfaces, 2017, 4(15): 1700141.

[12]

Liu S, Yuen MC, White EL, et al. Laser sintering of liquid metal nanoparticles for scalable manufacturing of soft and flexible electronics. ACS Appl Mater Interfaces, 2018, 10(33): 28232-28241.

[13]

Dai D, Zhou YX, Liu J Liquid metal based thermoelectric generation system for waste heat recovery. Renew Energy, 2011, 36(12): 3530-3536.

[14]

Moskalyk RR Gallium: the backbone of the electronics industry. Miner Eng, 2003, 16(10): 921-929.

[15]

Jacoby M Liquid metals went to work. C&EN Glob Enterp, 2016, 94(49): 26.

[16]

Woo M Core concept: liquid metal renaissance points to wearables, soft robots, and new materials. P Natl Acad Sci USA, 2020, 117(10): 5088-5091.

[17]

Yan J, Lu Y, Chen G, et al. Advances in liquid metals for biomedical applications. Chem Soc Rev, 2018, 47(8): 2518-2533.

[18]

Guo X, Zhang L, Ding Y, et al. Room-temperature liquid metal and alloy systems for energy storage applications. Energ Environ SCI, 2019, 12(9): 2605-2619.

[19]

Ladd C, So JH, Muth J, et al. 3D Printing of free standing liquid metal microstructures. Adv Mater, 2013, 25(36): 5081-5085.

[20]

Hirsch A, Michaud HO, Gerratt AP, et al. Intrinsically stretchable biphasic (solid–liquid) thin metal films. Adv Mater, 2016, 28: 4507-4512.

[21]

Dickey MD EML webinar overview: liquid metals at the extreme. Extreme Mech Lett, 2020, 40.

[22]

Gong XG, Chiarotti GL, Parrinello M α-gallium: a metallic molecular crystal. Phys Rev B, 1991, 43(17): 14277-14280.

[23]

Hoather WH The density and coefficient of expansion of liquid gallium over a wide range of temperature. Proc Phys Soc, 1936, 48(5): 699-707.

[24]

Li R, Wang L, Li L, et al. Local structure of liquid gallium under pressure. Sci Rep, 2017, 7(1): 5666.

AI Summary AI Mindmap
PDF

236

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/