Duality of Li2CO3 in Solid-State Batteries

Xuerui Yi , Yong Guo , Siyuan Pan , Yiqiao Wang , Sijia Chi , Shichao Wu , Quan-Hong Yang

Transactions of Tianjin University ›› 2023, Vol. 29 ›› Issue (1) : 73 -87.

PDF
Transactions of Tianjin University ›› 2023, Vol. 29 ›› Issue (1) : 73 -87. DOI: 10.1007/s12209-022-00351-w
Review

Duality of Li2CO3 in Solid-State Batteries

Author information +
History +
PDF

Abstract

Solid-state batteries (SSBs) have been considered the most promising technology because of their superior energy density and safety. Among all the solid-state electrolytes (SEs), Li7La3Zr2O12 (LLZO) with high ionic conductivity (3 × 10−4 S/cm) has been widely investigated. However, its large-scale production in ambient air faces a challenge. After air exposure, the generated Li2CO3 layer deteriorates the ionic conductivity and interfacial wettability, thus greatly compromising the electrochemical performance of SSBs. Many works aim to eliminate this layer to recover the pristine LLZO surface. Unfortunately, few articles have emphasized the merits of Li2CO3. In this review, we focus on the two-sidedness of Li2CO3. We discuss the various characteristics of Li2CO3 that can be used and recapitulate the strategies that utilize Li2CO3. Insulating Li2CO3 is no longer an obstacle but an opportunity for realizing intimate interfacial contact, high air stability, and outstanding electrochemical performance. This review aims to offer insightful guidelines for treating air-induced Li2CO3 and lead to developing the enhanced air stability and electrochemical performance of LLZO.

Graphical Abstract

Keywords

Solid-state battery / Garnet / Li7La3Zr2O12 / Li2CO3

Cite this article

Download citation ▾
Xuerui Yi, Yong Guo, Siyuan Pan, Yiqiao Wang, Sijia Chi, Shichao Wu, Quan-Hong Yang. Duality of Li2CO3 in Solid-State Batteries. Transactions of Tianjin University, 2023, 29(1): 73-87 DOI:10.1007/s12209-022-00351-w

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tarascon JM, Armand M Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414(6861): 359-367.

[2]

Lu WZ, Xue MZ, Zhang CM Modified Li7La3Zr2O12 (LLZO) and LLZO-polymer composites for solid-state lithium batteries. Energy Storage Mater, 2021, 39: 108-129.

[3]

Heo K, Song YW, Hwang D, et al. Effect of a self-assembling La2(Ni0.5Li0.5)O4 and amorphous garnet-type solid electrolyte composite on a layered cathode material in all-solid-state batteries. RSC Adv, 2022, 12(22): 14209-14222.

[4]

Weiss M, Simon FJ, Busche MR, et al. From liquid- to solid-state batteries: ion transfer kinetics of heteroionic interfaces. Electrochem Energy Rev, 2020, 3(2): 221-238.

[5]

Samson AJ, Hofstetter K, Bag S, et al. A bird's-eye view of Li-stuffed garnet-type Li7La3Zr2O12 ceramic electrolytes for advanced all-solid-state Li batteries. Energy Environ Sci, 2019, 12(10): 2957-2975.

[6]

Reddy MV, Julien CM, Mauger A, et al. Sulfide and oxide inorganic solid electrolytes for all-solid-state Li batteries: a review. Nanomaterials (Basel), 2020, 10(8): 1606.

[7]

Deiseroth HJ, Kong ST, Eckert H, et al. Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. Angew Chem Int Ed, 2008, 47(4): 755-758.

[8]

Zhang WB, Weber DA, Weigand H, et al. Interfacial processes and influence of composite cathode microstructure controlling the performance of all-solid-state lithium batteries. ACS Appl Mater Interfaces, 2017, 9(21): 17835-17845.

[9]

Manthiram A, Yu XW, Wang SF Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater, 2017, 2: 16103.

[10]

Thangadurai V, Kaack H, Weppner W Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M = Nb, Ta). J Am Ceram Soc, 2003, 86: 437-440.

[11]

Murugan R, Thangadurai V, Weppner W Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem, 2007, 46: 7778-7781.

[12]

Du FM, Zhao N, Li YQ, et al. All solid state lithium batteries based on lamellar garnet-type ceramic electrolytes. J Power Sour, 2015, 300: 24-28.

[13]

Monroe C, Newman J The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J Electrochem Soc, 2005, 152(2): A396.

[14]

Cao DX, Sun X, Li Q, et al. Lithium dendrite in all-solid-state batteries: growth mechanisms, suppression strategies, and characterizations. Matter, 2020, 3(1): 57-94.

[15]

Ma C, Rangasamy E, Liang CD, et al. Excellent stability of a lithium-ion-conducting solid electrolyte upon reversible Li+/H+ exchange in aqueous solutions. Angew Chem Int Ed Engl, 2015, 54(1): 129-133.

[16]

Cheng L, Crumlin EJ, Chen W, et al. The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes. Phys Chem Chem Phys, 2014, 16(34): 18294-18300.

[17]

Galven C, Dittmer J, Suard E, et al. Instability of lithium garnets against moisture. Structural characterization and dynamics of Li7-xHxLa3Sn2O12 and Li5-xHxLa3Nb2O12. Chem Mater, 2012, 24(17): 3335-3345.

[18]

Han FD, Yue J, Chen C, et al. Interphase engineering enabled all-ceramic lithium battery. Joule, 2018, 2(3): 497-508.

[19]

Huo HY, Li XN, Sun YP, et al. Li2CO3 effects: new insights into polymer/garnet electrolytes for dendrite-free solid lithium batteries. Nano Energy, 2020, 73: 104836.

[20]

Huo HY, Chen Y, Zhao N, et al. In-situ formed Li2CO3-free garnet/Li interface by rapid acid treatment for dendrite-free solid-state batteries. Nano Energy, 2019, 61: 119-125.

[21]

Sharafi A, Kazyak E, Davis AL, et al. Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12. Chem Mater, 2017, 29(18): 7961-7968.

[22]

Truong L, Thangadurai V Soft-chemistry of garnet-type Li5+ xBa xLa3- xNb2O12 (x = 0, 0.5, 1): reversible H+↔Li+ ion-exchange reaction and their X-Ray, 7Li MAS NMR, IR, and AC impedance spectroscopy characterization. Chem Mater, 2011, 23: 3970-3977.

[23]

Nyman M, Alam TM, McIntyre SK, et al. Alternative approach to increasing Li mobility in Li-La-Nb/Ta garnet electrolytes. Chem Mater, 2010, 22(19): 5401-5410.

[24]

Jin Y, McGinn PJ Li7La3Zr2O12 electrolyte stability in air and fabrication of a Li/Li7La3Zr2O12/Cu0.1V2O5 solid-state battery. J Power Sour, 2013, 239: 326-331.

[25]

Larraz G, Orera A, Sanjuán ML Cubic phases of garnet-type Li7La3Zr2O12: the role of hydration. J Mater Chem A, 2013, 1(37): 11419-11428.

[26]

Wang YX, Lai W Phase transition in lithium garnet oxide ionic conductors Li7La3Zr2O12: the role of Ta substitution and H2O/CO2 exposure. J Power Sour, 2015, 275: 612-620.

[27]

Xia WH, xu BY, Duan HN, et al. Reaction mechanisms of lithium garnet pellets in ambient air: the effect of humidity and CO2. J Am Ceram Soc, 2017, 100(7): 2832-2839.

[28]

Sharafi A, Yu S, Naguib M, et al. Impact of air exposure and surface chemistry on Li-Li7La3Zr2O12 interfacial resistance. J Mater Chem A, 2017, 5(26): 13475-13487.

[29]

Williams DD, Miller RR Effect of water vapor on the LiOH-CO2 reaction. Ind Eng Chem Fundam, 1970, 9: 454-457.

[30]

Busche MR, Drossel T, Leichtweiss T, et al. Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts. Nat Chem, 2016, 8(5): 426-434.

[31]

Liu T, Ren YY, Shen Y, et al. Achieving high capacity in bulk-type solid-state lithium ion battery based on Li6.75La3Zr1.75Ta0.25O12 electrolyte: interfacial resistance. J Power Sour, 2016, 324: 349-357.

[32]

Xu BY, Duan HN, Liu HZ, et al. Stabilization of garnet/liquid electrolyte interface using superbase additives for hybrid Li batteries. ACS Appl Mater Interfaces, 2017, 9: 21077-21082.

[33]

Fu XJ, Wang TT, Shen WZ, et al. A high-performance carbonate-free lithium|garnet interface enabled by a trace amount of sodium. Adv Mater, 2020, 32(26): 2000575.

[34]

Cheng L, Wu CH, Jarry A, et al. Interrelationships among grain size, surface composition, air stability, and interfacial resistance of Al-substituted Li7La3Zr2O12 solid electrolytes. ACS Appl Mater Interfaces, 2015, 7(32): 17649-17655.

[35]

Brugge RH, Hekselman AKO, Cavallaro A, et al. Garnet electrolytes for solid state batteries: visualization of moisture-induced chemical degradation and revealing its impact on the Li-ion dynamics. Chem Mater, 2018, 30(11): 3704-3713.

[36]

Feng JR, Gao ZH, Sheng L, et al. Progress and perspective of interface design in garnet electrolyte-based all-solid-state batteries. Carbon Energy, 2021, 3: 385-409.

[37]

Guo Y, Wu SC, He YB, et al. Solid-state lithium batteries: safety and prospects. eScience, 2022, 2(2): 138-163.

[38]

Huo HY, Luo J, Thangadurai V, et al. Li2CO3: a critical issue for developing solid garnet batteries. ACS Energy Lett, 2019, 5(1): 252-262.

[39]

Aguesse F, López del Amo JM, Roddatis V, et al. Enhancement of the grain boundary conductivity in ceramic Li0.34La0.55TiO3Electrolytes in a moisture-free processing environment. Adv Mater Interfaces, 2014, 1(7): 1300143.

[40]

Guo YX, Cheng J, Zeng Z, et al. Li2CO3: insights into its blocking effect on Li-ion transfer in garnet composite electrolytes. ACS Appl Energy Mater, 2022, 5: 2853-2861.

[41]

Chen RS, Li QH, Yu XQ, et al. Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem Rev, 2020, 120(14): 6820-6877.

[42]

Geiger CA, Alekseev E, Lazic B, et al. Crystal chemistry and stability of “Li7La3Zr2O12” garnet: a fast lithium-ion conductor. Inorg Chem, 2011, 50(3): 1089-1097.

[43]

Rettenwander D, Geiger CA, Amthauer G Synthesis and crystal chemistry of the fast Li-ion conductor Li7La3Zr2O12 doped with Fe. Inorg Chem, 2013, 52(14): 8005-8009.

[44]

Rettenwander D, Geiger CA, Tribus M, et al. A synthesis and crystal chemical study of the fast ion conductor Li7–3xGaxLa3Zr2O12 with x = 0.08 to 0.84. Inorg Chem, 2014, 53(12): 6264-6269.

[45]

Abrha LH, Hagos TT, Nikodimos Y, et al. Dual-doped cubic garnet solid electrolytes with superior air stability. ACS Appl Mater Interfaces, 2020, 12(23): 25709-25717.

[46]

Xia W, Xu B, Duan H, Guo Y, Kang H, Li H, Liu H Ionic conductivity and air stability of Al-doped Li7La3Zr2O12 sintered in alumina and Pt crucibles. ACS Appl Mater Interfaces, 2016, 8(8): 5335-5342.

[47]

Luo YL, Li XY, Zhang YL, et al. Electrochemical properties and structural stability of Ga- and Y- co-doping in Li7La3Zr2O12 ceramic electrolytes for lithium-ion batteries. Electrochim Acta, 2018, 294: 217-225.

[48]

Leo CJ, Subba Rao GV, Chowdari BVR Effect of MgO addition on the ionic conductivity of LiGe2(PO4)3 ceramics. Solid State Ion, 2003, 159(3–4): 357-367.

[49]

Zhang Y, Meng JW, Chen KY, et al. Behind the candelabra: a facile flame vapor deposition method for interfacial engineering of garnet electrolyte to enable ultralong cycling solid-state Li-FeF3 conversion batteries. ACS Appl Mater Interfaces, 2020, 12(30): 33729-33739.

[50]

Li YQ, Cao Y, Guo XX Influence of lithium oxide additives on densification and ionic conductivity of garnet-type Li6.75La3Zr1.75Ta0.25O12 solid electrolytes. Solid State Ion, 2013, 253: 76-80.

[51]

Duan HN, Zheng HP, Zhou Y, et al. Stability of garnet-type Li ion conductors: an overview. Solid State Ion, 2018, 318: 45-53.

[52]

Li YT, Xu BY, Xu HH, et al. Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries. Angew Chem Int Ed Engl, 2017, 56(3): 753-756.

[53]

Xu BY, Li WL, Duan HN, et al. Li3PO4-added garnet-type Li6.5La3Zr1.5Ta0.5O12 for Li-dendrite suppression. J Power Sour, 2017, 354: 68-73.

[54]

Prasada RR, Gu WY, Sharma N, et al. In situ neutron diffraction monitoring of Li7 La3 Zr2 O12 formation: toward a rational synthesis of garnet solid electrolytes. Chem Mater, 2015, 27(8): 2903-2910.

[55]

Li YT, Chen X, Dolocan A, et al. Garnet electrolyte with an ultra-low interfacial resistance for Li-metal batteries. J Am Chem Soc, 2018, 140(20): 6448-6455.

[56]

Wu JF, Pu BW, Wang D, et al. In situ formed shields enabling Li2CO3-free solid electrolytes: a new route to uncover the intrinsic lithiophilicity of garnet electrolytes for dendrite-free Li-metal batteries. ACS Appl Mater Interfaces, 2019, 11(1): 898-905.

[57]

Cheng L, Liu M, Mehta A, et al. Garnet electrolyte surface degradation and recovery. ACS Appl Energy Mater, 2018, 1(12): 7244-7252.

[58]

Cheng L, Chen W, Kunz M, et al. Effect of surface microstructure on electrochemical performance of garnet solid electrolytes. ACS Appl Mater Interfaces, 2015, 7(3): 2073-2081.

[59]

Ruan YD, Lu Y, Huang X, et al. Acid induced conversion towards robust and lithiophilic interface for Li-Li7La3Zr2O12 solid-state battery. J Mater Chem A, 2019, 7(24): 14565-14574.

[60]

Duan H, Chen WP, Fan M, et al. Building an air stable and lithium deposition regulable garnet interface from moderate-temperature conversion chemistry. Angew Chem Int Ed Engl, 2020, 59(29): 12069-12075.

[61]

Zhang SS, Zhao HL, Wang J, et al. Enhanced densification and ionic conductivity of Li-garnet electrolyte: efficient Li2CO3 elimination and fast grain-boundary transport construction. Chem Eng J, 2020, 393: 124797.

[62]

Zhang JX, Yu RH, Li J, et al. Transformation of undesired Li2CO3 into lithiophilic layer via double replacement reaction for garnet electrolyte engineering. Energy Environ Mater, 2021, 5: 962-968.

[63]

Shen ZC, Cheng YF, Sun SH, et al. The critical role of inorganic nanofillers in solid polymer composite electrolyte for Li+ transportation. Carbon Energy, 2021, 3: 482-508.

[64]

Chen H, Zheng MT, Qian SS, et al. Functional additives for solid polymer electrolytes in flexible and high-energy-density solid-state lithium-ion batteries. Carbon Energy, 2021, 3: 929-956.

[65]

Huang ZY, Pang WY, Liang P, et al. A dopamine modified Li6.4La3Zr1.4Ta0.6O12/PEO solid-state electrolyte: enhanced thermal and electrochemical properties. J Mater Chem A, 2019, 7(27): 16425-16436.

[66]

Su SM, Ma JB, Zhao L, et al. Progress and perspective of the cathode/electrolyte interface construction in all-solid-state lithium batteries. Carbon Energy, 2021, 3(2): 866-894.

[67]

Mijung N, Lee Y, Cho J Water adsorption and storage characteristics of optimized LiCoO2 and LiNi1∕3Co1∕3Mn1∕3O2 composite cathode material for Li-ion cells. J Electrochem Soc, 2006, 153(5): A935.

[68]

Yang YN, Li YX, Li YQ, et al. On-surface lithium donor reaction enables decarbonated lithium garnets and compatible interfaces within cathodes. Nat Commun, 2020, 11: 5519.

[69]

Meng JW, Zhang Y, Zhou XJ, et al. Li2CO3-affiliative mechanism for air-accessible interface engineering of garnet electrolyte via facile liquid metal painting. Nat Commun, 2020, 11(1): 3716.

[70]

You Y, Celio H, Li JY, et al. Modified high-nickel cathodes with stable surface chemistry against ambient air for lithium-ion batteries. Angew Chem, 2018, 130(22): 6590-6595.

[71]

Jung R, Morasch R, Karayaylali P, et al. Effect of ambient storage on the degradation of Ni-rich positive electrode materials (NMC811) for Li-ion batteries. J Electrochem Soc, 2018, 165(2): A132-A141.

[72]

Kong D, Hu J, Chen Z, Song K, Li C, Weng M, Pan F Ti-gradient doping to stabilize layered surface structure for high performance high-Ni oxide cathode of Li-ion battery. Adv Energy Mater, 2019, 9(41): 1901756.

[73]

Xie Q, Li WD, Manthiram A A Mg-doped high-nickel layered oxide cathode enabling safer, high-energy-density Li-ion batteries. Chem Mater, 2019, 31(3): 938-946.

[74]

Song BH, Li WD, Oh SM, et al. Long-life nickel-rich layered oxide cathodes with a uniform Li2ZrO3 surface coating for lithium-ion batteries. ACS Appl Mater Interfaces, 2017, 9(11): 9718-9725.

[75]

Kim J, Lee J, Ma H, et al. Controllable solid electrolyte interphase in nickel-rich cathodes by an electrochemical rearrangement for stable lithium-ion batteries. Adv Mater, 2018, 30(5): 1704309.

[76]

Xie Q, Manthiram A Long-life, ultrahigh-nickel cathodes with excellent air storage stability for high-energy density lithium-based batteries. Chem Mater, 2020, 32: 7413-7424.

[77]

Guo JL, Cai YJ, Zhang SJ, et al. Core-shell structured o-LiMnO2@Li2CO3 nanosheet array cathode for high-performance, wide-temperature-tolerance lithium-ion batteries. ACS Appl Mater Interfaces, 2016, 8(25): 16116-16124.

[78]

Tian N, Hua CX, Wang ZX, et al. Reversible reduction of Li2CO3. J Mater Chem A, 2015, 3(27): 14173-14177.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/