Recent Advances in Electrochemical Oxidation to Construct C–O Bonds

Lei Zhan , Wan-Jie Wei , Cai-Nai Jiang , Lei Gao , Xian-Li Ma

Transactions of Tianjin University ›› 2022, Vol. 28 ›› Issue (6) : 482 -505.

PDF
Transactions of Tianjin University ›› 2022, Vol. 28 ›› Issue (6) : 482 -505. DOI: 10.1007/s12209-022-00345-8
Review

Recent Advances in Electrochemical Oxidation to Construct C–O Bonds

Author information +
History +
PDF

Abstract

C–O bonds are widely found in pharmaceuticals and natural products and have various pharmacological activities. Therefore, developing effective strategies for constructing compounds containing C–O bonds has become a research hotspot among chemists. Organic electrochemical synthesis is a green, mild, and efficient strategy that shows great potential in the synthesis of compounds containing C–O bonds. This review introduces the reactions of compounds containing C–O bonds recently constructed by electrochemical methods and expounds the corresponding reaction mechanism to provide a reference for applying such reactions in organic synthesis.

Keywords

Organic electrochemistry / C–O bond / Green synthesis

Cite this article

Download citation ▾
Lei Zhan, Wan-Jie Wei, Cai-Nai Jiang, Lei Gao, Xian-Li Ma. Recent Advances in Electrochemical Oxidation to Construct C–O Bonds. Transactions of Tianjin University, 2022, 28(6): 482-505 DOI:10.1007/s12209-022-00345-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bernardes LSC, Kato MJ, Albuquerque S, et al. Synthesis and trypanocidal activity of 1,4-bis-(3,4, 5-trimethoxy-phenyl)-1,4-butanediol and 1,4-bis-(3,4-dimethoxyphenyl)-1,4-butanediol. Bioorg Med Chem, 2006, 14(21): 7075-7082.

[2]

Metternich JB, Gilmour R One photocatalyst, n activation modes strategy for cascade catalysis: emulating coumarin biosynthesis with (-)-riboflavin. J Am Chem Soc, 2016, 138(3): 1040-1045.

[3]

Zhong PF, Lin HM, Wang LW, et al. Electrochemically enabled synthesis of sulfide imidazopyridines via a radical cyclization cascade. Green Chem, 2020, 22(19): 6334-6339.

[4]

He MX, Mo ZY, Wang ZQ, et al. Electrochemical synthesis of 1-naphthols by intermolecular annulation of alkynes with 1,3-dicarbonyl compounds. Org Lett, 2020, 22(2): 724-728.

[5]

Wang ZQ, Hou C, Zhong YF, et al. Electrochemically enabled double C-H activation of amides: chemoselective synthesis of polycyclic isoquinolinones. Org Lett, 2019, 21(24): 9841-9845.

[6]

Meng XJ, Zhong PF, Wang YM, et al. Electrochemical difunctionalization of olefines: access to selenomethyl-substituted cyclic ethers or lactones. Adv Synth Catal, 2020, 362(3): 506-511.

[7]

Zhang YZ, Mo ZY, Wang HS, et al. Electrochemically enabled chemoselective sulfonylation and hydrazination of indoles. Green Chem, 2019, 21(14): 3807-3811.

[8]

Mo ZY, Swaroop TR, Tong W, et al. Electrochemical sulfonylation of thiols with sulfonyl hydrazides: a metal- and oxidant-free protocol for the synthesis of thiosulfonates. Green Chem, 2018, 20(19): 4428-4432.

[9]

Wang ZQ, Meng XJ, Li QY, et al. Electrochemical synthesis of 3, 5-disubstituted-1,2,4-thiadiazoles through NH4I-mediated dimerization of thioamides. Adv Synth Catal, 2018, 360(21): 4043-4048.

[10]

He MX, Zhong PF, Liu HF, et al. Electrochemically mediated three-component synthesis of isothioureas using thiols as sulfur source. Green Synth Catal, 2022

[11]

Wang XY, Zhong YF, Mo ZY, et al. Synthesis of seleno oxindoles via electrochemical cyclization of N-arylacrylamides with diorganyl diselenides. Adv Synth Catal, 2021, 363(1): 208-214.

[12]

Yang ZX, Yu Y, Lai LC, et al. Carbon dioxide cycle via electrocatalysis: electrochemical carboxylation of CO2 and decarboxylative functionalization of carboxylic acids. Green Synth Catal, 2021, 2(1): 19-26.

[13]

Wang XY, Wu SH, Zhong YJ, et al. Electrochemically mediated decarboxylative acylation of N-nitrosoanilines with α-oxocarboxylic acids. Chin Chem Lett, 2022

[14]

Li QY, Cheng SY, Tang HT, et al. Synthesis of rutaecarpine alkaloids via an electrochemical cross dehydrogenation coupling reaction. Green Chem, 2019, 21(20): 5517-5520.

[15]

Ashikari Y, Nokami T, Yoshida JI Integrated electrochemical-chemical oxidation mediated by alkoxysulfonium ions. J Am Chem Soc, 2011, 133(31): 11840-11843.

[16]

Meng L, Su JH, Zha ZG, et al. Direct electrosynthesis of ketones from benzylic methylenes by electrooxidative C–H activation. Chemistry, 2013, 19(18): 5542-5545.

[17]

Zhu Y, Jiang C, Li H, et al. Electrochemical aerobic oxygenation and nitrogenation of cyclic alkenes via C=C bond cleavage or oxygenation and azidation of open-chain alkenes. J Org Chem, 2022, 87(16): 11031-11041.

[18]

Pradhan PP, Bobbitt JM, Bailey WF Oxidative cleavage of benzylic and related ethers, using an oxoammonium salt. J Org Chem, 2009, 74(24): 9524-9527.

[19]

Li C, Zeng CC, Hu LM, et al. Electrochemically induced CH functionalization using bromide ion/2, 2,6,6-tetramethylpiperidinyl-N-oxyl dual redox catalysts in a two-phase electrolytic system. Electrochim Acta, 2013, 114: 560-566.

[20]

Kawamata Y, Yan M, Liu ZQ, et al. Scalable, electrochemical oxidation of unactivated C–H bonds. J Am Chem Soc, 2017, 139(22): 7448-7451.

[21]

Hou ZW, Xu HC Electrochemically enabled intramolecular aminooxygenation of alkynes via amidyl radical cyclization. Chin J Chem, 2020, 38(4): 394-398.

[22]

Wang LW, Feng YF, Lin HM, et al. Electrochemically enabled selenium catalytic synthesis of 2, 1-benzoxazoles from o-nitrophenylacetylenes. J Org Chem, 2021, 86(22): 16121-16127.

[23]

Zhao P, Yin YW Synthesis α-aminonitrile through anodic cyanation of N-benzylpiperidine. J Heterocycl Chem, 2004, 41(2): 157-160.

[24]

Sierecki E, Errasti G, Martens T, et al. Diastereoselective α-allylation of secondary amines. Tetrahedron, 2010, 66(52): 10002-10007.

[25]

Turcaud S, Martens T, Sierecki E, et al. Anodic oxidation of chiral sulfinylamines: a new route to highly diastereoselective α-alkylation of piperidine. Tetrahedron Lett, 2005, 46(31): 5131-5134.

[26]

Shi LL, Zheng LY, Ning SL, et al. Electrooxidative dearomatization of inactive biphenyls to cyclohexadienones. Org Lett, 2022, 24(31): 5782-5786.

[27]

Engle KM, Mei TS, Wang XS, et al. Bystanding F+ oxidants enable selective reductive elimination from high-valent metal centers in catalysis. Angew Chem Int Ed Engl, 2011, 50(7): 1478-1491.

[28]

Mei TS, Wang XS, Yu JQ Pd(II)-catalyzed amination of C-H bonds using single-electron or two-electron oxidants. J Am Chem Soc, 2009, 131(31): 10806-10807.

[29]

Dudkina YB, Mikhaylov DY, Gryaznova TV, et al. Electrochemical ortho functionalization of 2-phenylpyridine with perfluorocarboxylic acids catalyzed by palladium in higher oxidation states. Organometallics, 2013, 32(17): 4785-4792.

[30]

Yang QL, Li YQ, Ma C, et al. Palladium-catalyzed C(sp3)–H oxygenation via electrochemical oxidation. J Am Chem Soc, 2017, 139(8): 3293-3298.

[31]

Li YQ, Yang QL, Fang P, et al. Palladium-catalyzed C(sp2)–H acetoxylation via electrochemical oxidation. Org Lett, 2017, 19(11): 2905-2908.

[32]

Sauermann N, Meyer TH, Tian C, et al. Electrochemical cobalt-catalyzed C–H oxygenation at room temperature. J Am Chem Soc, 2017, 139(51): 18452-18455.

[33]

Iwasaki M, Kazao Y, Ishida T, et al. Synthesis of oxygen-containing heterocyclic compounds by iron-catalyzed alkylative cyclization of unsaturated carboxylic acids and alcohols. Org Lett, 2020, 22(18): 7343-7347.

[34]

Liu B, Moeller KD Anodic oxidation reactions: the total synthesis of (+)-nemorensic acid. Tetrahedron Lett, 2001, 42(41): 7163-7165.

[35]

Xu HC, Brandt JD, Moeller KD Anodic cyclization reactions and the synthesis of (−)-crobarbatic acid. Tetrahedron Lett, 2008, 49(24): 3868-3871.

[36]

Luo MJ, Lv GF, Li Y, et al. Metal-free amino-controlled electrochemical intramolecular C–O and C–N couplings by site-selective activation of aryl C–N and C–O bonds. Green Chem, 2021, 23(5): 2044-2048.

[37]

He MX, Yao Y, Ai CZ, et al. Electrochemically-mediated C–H functionalization of allenes and 1,3-dicarbonyl compounds to construct tetrasubstituted furans. Org Chem Front, 2022, 9(3): 781-787.

[38]

Kao CL, Chern JW A novel strategy for the synthesis of benzofuran skeleton neolignans: application to ailanthoidol, XH-14, and obovaten. J Org Chem, 2002, 67(19): 6772-6787.

[39]

Apers S, Vlietinck A, Pieters L Lignans and neolignans as lead compounds. Phytochem Rev, 2003, 2(3): 201-217.

[40]

Mori N, Furuta A, Watanabe H Electochemical asymmetric dimerization of cinnamic acid derivatives and application to the enantioselective syntheses of furofuran lignans. Tetrahedron, 2016, 72(51): 8393-8399.

[41]

Gieshoff T, Kehl A, Schollmeyer D, et al. Electrochemical synthesis of benzoxazoles from anilides—a new approach to employ amidyl radical intermediates. Chem Commun (Camb), 2017, 53(20): 2974-2977.

[42]

Liang XG, Niu LB, Wang SC, et al. Electrochemical (3 + 2) cyclization between amides and olefins. Chem Catal, 2021, 1(5): 1055-1064.

[43]

Ou CH, Pan YM, Tang HT Electrochemically promoted N-heterocyclic carbene polymer-catalyzed cycloaddition of aldehyde with isocyanide acetate. Sci China Chem, 2022, 65(10): 1873-1878.

[44]

Xu F, Qian XY, Li YJ, et al. Synthesis of 4H–1,3-benzoxazines via metal- and oxidizing reagent-free aromatic C–H oxygenation. Org Lett, 2017, 19(23): 6332-6335.

[45]

Zhang L, Zhang ZX, Hong JT, et al. Oxidant-free C(sp2)–H functionalization/C–O bond formation: a Kolbe oxidative cyclization process. J Org Chem, 2018, 83(6): 3200-3207.

[46]

Shao AL, Li N, Gao Y, et al. Electrochemical intramolecular C–H/O–H cross-coupling of 2-arylbenzoic acids. Chin J Chem, 2018, 36(7): 619-624.

[47]

Zhang S, Li LJ, Wang HQ, et al. Scalable electrochemical dehydrogenative lactonization of C(sp2/sp3)–H bonds. Org Lett, 2018, 20(1): 252-255.

[48]

Li Y, Ding YJ, Wang JY, et al. Pd-catalyzed C–H lactonization for expedient synthesis of biaryl lactones and total synthesis of cannabinol. Org Lett, 2013, 15(11): 2574-2577.

AI Summary AI Mindmap
PDF

303

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/