Direct and Indirect Electro-Oxidative Intramolecular C–H Aminations

Huiqiao Wang , Kun Xu

Transactions of Tianjin University ›› 2022, Vol. 28 ›› Issue (6) : 469 -481.

PDF
Transactions of Tianjin University ›› 2022, Vol. 28 ›› Issue (6) : 469 -481. DOI: 10.1007/s12209-022-00342-x
Review

Direct and Indirect Electro-Oxidative Intramolecular C–H Aminations

Author information +
History +
PDF

Abstract

The ubiquity of N-heterocycles in marketed drugs makes the development of metal-free methodologies for constructing C–N bonds of considerable importance. As an environmentally friendly method, electro-oxidative intramolecular C–H amination has emerged as a powerful platform for synthesizing nitrogen-containing heterocycles under metal- and external oxidant-free conditions. In this minireview, the main achievements in this direction since 2020 are summarized, with an emphasis on the substrate scope and mechanistic aspects. The reactions are classified into two categories: direct and indirect electro-oxidative intramolecular C–H aminations.

Keywords

Electrosynthesis C–H amination N-heterocycle Indirect electrolysis

Cite this article

Download citation ▾
Huiqiao Wang, Kun Xu. Direct and Indirect Electro-Oxidative Intramolecular C–H Aminations. Transactions of Tianjin University, 2022, 28(6): 469-481 DOI:10.1007/s12209-022-00342-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yang K, Liu MJ, Zhang YN, et al. Progress in the synthesis of benzoheterocycles from 2-halobenzamides. Chin J Org Chem, 2021, 41(6): 2175.

[2]

Kumar D, Jain SK A comprehensive review of N-heterocycles as cytotoxic agents. Curr Med Chem, 2016, 23(38): 4338-4394.

[3]

Hazelard D, Nocquet PA, Compain P Catalytic C-H amination at its limits: challenges and solutions. Org Chem Front, 2017, 4(12): 2500-2521.

[4]

Feng YL, Shi BF Recent advances in base metal (copper, cobalt and nickel)-catalyzed directed C-H amination. Chin J Org Chem, 2021, 41(10): 3753.

[5]

Park Y, Kim Y, Chang S Transition metal-catalyzed C-H amination: scope, mechanism, and applications. Chem Rev, 2017, 117(13): 9247-9301.

[6]

Yang Q, Yan XT, Feng CT, et al. Tandem Strecker/C(sp3)–H amination reactions for the construction of cyanide-functionalized imidazo[1, 5-a]pyridines with NH4SCN as a cyanating agent. Org Chem Front, 2021, 8(22): 6384-6389.

[7]

Tan C, Liu YG, Liu XY, et al. Stereoselective synthesis of trans-aziridines via intramolecular oxidative C(sp3)–H amination of β-amino ketones. Org Chem Front, 2020, 7(5): 780-786.

[8]

Zhao YT, Zeng JJ, Xia WJ Visible-light-induced α-C(sp3)–H amination reactions of tertiary amines. Chin J Org Chem, 2020, 40(1): 133.

[9]

Miao Q, Shao Z, Shi CY, et al. Metal-free C-H amination of arene with N-fluorobenzenesulfonimide catalysed by nitroxyl radicals at room temperature. Chem Commun (Camb), 2019, 55(51): 7331-7334.

[10]

Li JJ, Zhang S, Xu K Recent advances towards electrochemical transformations of α-keto acids. Chin Chem Lett, 2021, 32(9): 2729-2735.

[11]

Cheng X, Lei AW, Mei TS, et al. Recent applications of homogeneous catalysis in electrochemical organic synthesis. CCS Chem, 2022, 4(4): 1120-1152.

[12]

Yuan Y, Yang J, Lei AW Recent advances in electrochemical oxidative cross-coupling with hydrogen evolution involving radicals. Chem Soc Rev, 2021, 50(18): 10058-10086.

[13]

Ma C, Fang P, Liu ZR, et al. Recent advances in organic electrosynthesis employing transition metal complexes as electrocatalysts. Sci Bull, 2021, 66(23): 2412-2429.

[14]

Meng ZY, Feng CT, Xu K Recent advances in the electrochemical formation of carbon-nitrogen bonds. Chin J Org Chem, 2021, 41(7): 2535.

[15]

Wang HQ, Zheng YJ, Xu HC, et al. Metal-free synthesis of N-heterocycles via intramolecular electrochemical C-H aminations. Front Chem, 2022, 10.

[16]

Ackermann L Metalla-electrocatalyzed C-H activation by earth-abundant 3d metals and beyond. Acc Chem Res, 2020, 53(1): 84-104.

[17]

Jiang YY, Xu K, Zeng CC Electrophotocatalytic Si–H activation governed by polarity-matching effects. CCS Chem, 2022, 4(5): 1796-1805.

[18]

Ke J, Liu WT, Zhu XJ, et al. Electrochemical radical silyl-oxygenation of activated alkenes. Angew Chem Int Ed Engl, 2021, 60(16): 8744-8749.

[19]

Najmi AA, Bhat MF, Bischoff R, et al. TEMPO-mediated electrochemical N-demethylation of opiate alkaloids. ChemElectroChem, 2021, 8(13): 2590-2596.

[20]

Tan ZM, He XR, Xu K, et al. Electrophotocatalytic C-H functionalization of N-heteroarenes with unactivated alkanes under external oxidant-free conditions. Chemsuschem, 2022, 15(6): e202102360.

[21]

Wang ZH, Gao PS, Wang X, et al. TEMPO-enabled electrochemical enantioselective oxidative coupling of secondary acyclic amines with ketones. J Am Chem Soc, 2021, 143(38): 15599-15605.

[22]

Cai C, Lu Y, Yuan CC, et al. Organocatalytic electrosynthesis of cinnolines through cascade radical cyclization and migration. ACS Sustainable Chem Eng, 2021, 9(50): 16989-16996.

[23]

Liu F, Dai J, Cheng X Aryl-iodide-mediated electrochemical aziridination of electron-deficient alkenes. Chin J Org Chem, 2021, 41(10): 4014.

[24]

Xiong P, Xu HC Chemistry with electrochemically generated N-centered radicals. Acc Chem Res, 2019, 52(12): 3339-3350.

[25]

Lv SD, Han XX, Wang JY, et al. Tunable electrochemical C-N versus N–N bond formation of nitrogen-centered radicals enabled by dehydrogenative dearomatization: biological applications. Angew Chem Int Ed Engl, 2020, 59(28): 11583-11590.

[26]

Xu ZN, Huang ZX, Li YH, et al. Catalyst-free, direct electrochemical synthesis of annulated medium-sized lactams through C-C bond cleavage. Green Chem, 2020, 22(4): 1099-1104.

[27]

Thomas AA, Nagamalla S, Sathyamoorthi S Salient features of the aza-Wacker cyclization reaction. Chem Sci, 2020, 11(31): 8073-8088.

[28]

Huang C, Li ZY, Song JS, et al. Catalyst- and reagent-free formal aza-wacker cyclizations enabled by continuous-flow electrochemistry. Angew Chem Int Ed Engl, 2021, 60(20): 11237-11241.

[29]

Murray PRD, Cox JH, Chiappini ND, et al. Photochemical and electrochemical applications of proton-coupled electron transfer in organic synthesis. Chem Rev, 2022, 122(2): 2017-2291.

[30]

Zhao HB, Zhuang JL, Xu HC Electrochemical synthesis of benzimidazoles via dehydrogenative cyclization of amidines. Chemsuschem, 2021, 14(7): 1692-1695.

[31]

Kehl A, Schupp N, Breising VM, et al. Electrochemical synthesis of carbazoles by dehydrogenative coupling reaction. Chemistry, 2020, 26(68): 15847-15851.

[32]

Schmidt A, Dreger A ChemInform abstract: recent advances in the chemistry of pyrazoles properties biological activities and syntheses. Curr Org Chem, 2011, 15(9): 1423-1463.

[33]

Wan H, Li DT, Xia HD, et al. Synthesis of 1 H-indazoles by an electrochemical radical Csp2–H/N–H cyclization of arylhydrazones. Chem Commun (Camb), 2022, 58(5): 665-668.

[34]

Zhang H, Ye ZH, Chen N, et al. Electrochemical dehydrogenative C-N coupling of hydrazones for the synthesis of 1H-indazoles. Green Chem, 2022, 24(4): 1463-1468.

[35]

Wang HQ, Shi JX, Tan JJ, et al. Electrochemical synthesis of trans-2, 3-disubstituted aziridines via oxidative dehydrogenative intramolecular C(sp3)–H amination. Org Lett, 2019, 21(23): 9430-9433.

[36]

Hegde M, Sharath Kumar KS, Thomas E, et al. A novel benzimidazole derivative binds to the DNA minor groove and induces apoptosis in leukemic cells. RSC Adv, 2015, 5(113): 93194-93208.

[37]

Li QY, Cheng SY, Tang HT, et al. Synthesis of rutaecarpine alkaloids via an electrochemical cross dehydrogenation coupling reaction. Green Chem, 2019, 21: 5517-5520.

[38]

Li A, Li C, Yang T, et al. Electrochemical synthesis of benzo[d]imidazole via intramolecular C(sp3)–H amination. J Org Chem, 2021

[39]

Zhang LB, Geng RS, Wang ZC, et al. Electrochemical intramolecular C-H/N–H functionalization for the synthesis of isoxazolidine-fused isoquinolin-1(2H)-ones. Green Chem, 2020, 22(1): 16-21.

[40]

Hu KF, Zhang Y, Zhou ZH, et al. Iodine-mediated electrochemical C(sp2)–H amination: switchable synthesis of indolines and indoles. Org Lett, 2020, 22(15): 5773-5777.

[41]

Guo SP, Liu LY, Hu KF, et al. Electrochemical synthesis of 3-azido-indolines from amino-azidation of alkenes. Chin Chem Lett, 2021, 32(3): 1033-1036.

[42]

Wu J, Abou-Hamdan H, Guillot R, et al. Electrochemical synthesis of 3a-bromofuranoindolines and 3a-bromopyrroloindolines mediated by MgBr 2. Chem Commun, 2020, 56(11): 1713-1716.

[43]

Charpentier J, Früh N, Togni A Electrophilic trifluoromethylation by use of hypervalent iodine reagents. Chem Rev, 2015, 115(2): 650-682.

[44]

Maity A, Frey BL, Hoskinson ND, et al. Electrocatalytic C-N coupling via anodically generated hypervalent iodine intermediates. J Am Chem Soc, 2020, 142(11): 4990-4995.

[45]

Ohsawa T, Sasabe H, Watanabe T, et al. A series of imidazo[1, 2–f]phenanthridine-based sky-blue TADF emitters realizing EQE of over 20%. Adv Opt Mater, 2019, 7(5): 1801282.

[46]

Shi JX, Li JJ, Zhao WJ et al (2021) Regioselective intramolecular sp2 C–H amination: direct vs. mediated electrooxidation. Org Chem Front 8(7):1581–1586

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/