Recent Progress in Large-Area Perovskite Photovoltaic Modules

Haifei Wang , Zhixiao Qin , Yanfeng Miao , Yixin Zhao

Transactions of Tianjin University ›› 2022, Vol. 28 ›› Issue (5) : 323 -340.

PDF
Transactions of Tianjin University ›› 2022, Vol. 28 ›› Issue (5) : 323 -340. DOI: 10.1007/s12209-022-00341-y
Review

Recent Progress in Large-Area Perovskite Photovoltaic Modules

Author information +
History +
PDF

Abstract

Perovskite solar cells (PSCs) have undergone a dramatic increase in laboratory-scale efficiency to more than 25%, which is comparable to Si-based single-junction solar cell efficiency. However, the efficiency of PSCs drops from laboratory-scale to large-scale perovskite solar modules (PSMs) because of the poor quality of perovskite films, and the increased resistance of large-area PSMs obstructs practical PSC applications. An in-depth understanding of the fabricating processes is vital for precisely controlling the quality of large-area perovskite films, and a suitable structural design for PSMs plays an important role in minimizing energy loss. In this review, we discuss several solution-based deposition techniques for large-area perovskite films and the effects of operating conditions on the films. Furthermore, different structural designs for PSMs are presented, including the processing technologies and device architectures.

Keywords

Perovskite solar cells / Perovskite solar modules / Large-scale perovskite films / Solution-based coating methods

Cite this article

Download citation ▾
Haifei Wang, Zhixiao Qin, Yanfeng Miao, Yixin Zhao. Recent Progress in Large-Area Perovskite Photovoltaic Modules. Transactions of Tianjin University, 2022, 28(5): 323-340 DOI:10.1007/s12209-022-00341-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhao YX, Zhu K Organic–-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem Soc Rev, 2016, 45(3): 655-689.

[2]

Zuo CT, Bolink HJ, Han HW, et al. Advances in perovskite solar cells. Adv Sci (Weinh), 2016, 3(7): 1500324.

[3]

Galkowski K, Mitioglu A, Miyata A, et al. Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors. Energy Environ Sci, 2016, 9(3): 962-970.

[4]

Miyata A, Mitioglu A, Plochocka P, et al. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nat Phys, 2015, 11(7): 582-587.

[5]

Zhao YX, Zhu K Charge transport and recombination in perovskite (CH3NH3)PbI3 sensitized TiO2 solar cells. J Phys Chem Lett, 2013, 4(17): 2880-2884.

[6]

Stranks SD, Eperon GE, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342(6156): 341-344.

[7]

Chu WB, Zheng QJ, Prezhdo OV, et al. Low-frequency lattice phonons in halide perovskites explain high defect tolerance toward electron-hole recombination. Sci Adv, 2020, 6(7): eaaw7453.

[8]

Steirer KX, Schulz P, Teeter G, et al. Defect tolerance in methylammonium lead triiodide perovskite. ACS Energy Lett, 2016, 1(2): 360-366.

[9]

Yusoff AR, Nazeeruddin MK Organohalide lead perovskites for photovoltaic applications. J Phys Chem Lett, 2016, 7: 851-866.

[10]

Chen HN, Wei ZH, Zheng XL, et al. A scalable electrodeposition route to the low-cost, versatile and controllable fabrication of perovskite solar cells. Nano Energy, 2015, 15: 216-226.

[11]

Li ZQ, Zhao YZ, Wang X, et al. Cost analysis of perovskite tandem photovoltaics. Joule, 2018, 2(8): 1559-1572.

[12]

Han CX, Wang Y, Yuan JB, et al. Tailoring phase alignment and interfaces via polyelectrolyte anchoring enables large-area 2D perovskite solar cells. Angew Chem Int Ed Engl, 2022, 61(36): e202205111.

[13]

Swarnkar A, Marshall AR, Sanehira EM, et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science, 2016, 354(6308): 92-95.

[14]

Sutton RJ, Eperon GE, Miranda L, et al. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv Energy Mater, 2016, 6(8): 1502458.

[15]

Wang R, Huang TY, Xue JJ, et al. Prospects for metal halide perovskite-based tandem solar cells. Nat Photon, 2021, 15(6): 411-425.

[16]

Noh JH, Im SH, Heo JH, et al. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett, 2013, 13(4): 1764-1769.

[17]

Sun HX, Tian W, Wang XF, et al. In situ formed gradient bandgap-tunable perovskite for ultrahigh-speed color/spectrum-sensitive photodetectors via electron-donor control. Adv Mater, 2020, 32(14

[18]

Rajagopal A, Yang Z, Jo SB, et al. Highly efficient perovskite-perovskite tandem solar cells reaching 80% of the theoretical limit in photovoltage. Adv Mater, 2017, 29(34): 1702140.

[19]

Xiao K, Lin RX, Han QL, et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat Energy, 2020, 5(11): 870-880.

[20]

Gota F, Langenhorst M, Schmager R, et al. Energy yield advantages of three-terminal perovskite-silicon tandem photovoltaics. Joule, 2020, 4(11): 2387-2403.

[21]

Chen X, Jia ZY, Chen Z, et al. Efficient and reproducible monolithic perovskite/organic tandem solar cells with low-loss interconnecting layers. Joule, 2020, 4(7): 1594-1606.

[22]

Wang CL, Zhao Y, Ma TS, et al. A universal close-space annealing strategy towards high-quality perovskite absorbers enabling efficient all-perovskite tandem solar cells. Nat Energy, 2022, 7(8): 744-753.

[23]

Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Am Chem Soc, 2009, 131(17): 6050-6051.

[24]

Lee MM, Teuscher J, Miyasaka T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338(6107): 643-647.

[25]

Minjin K, Jaeki J, Lu HZ, et al. Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells. Science, 2022, 375(6578): 302-306.

[26]

Li Z, Li B, Wu X, et al. Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science, 2022, 376(6591): 416-420.

[27]

Min H, Lee DY, Kim J, et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature, 2021, 598(7881): 444-450.

[28]

Green MA, Dunlop ED, Hohl-Ebinger J, et al. Solar cell efficiency tables (version 59). Prog Photovolt Res Appl, 2021, 30: 3-12.

[29]

Zhao Y, Ma F, Qu ZH, et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science, 2022, 377(6605): 531-534.

[30]

Kim J, Yun JS, Cho Y, et al. Overcoming the challenges of large-area high-efficiency perovskite solar cells. ACS Energy Lett, 2017, 2(9): 1978-1984.

[31]

Bu TL, Liu XP, Li J, et al. Dynamic anti-solvent engineering for spin -coating of 10 ×10 cm2 perovskite solar module approaching 18%. Solar RRL, 2019, 4(2): 1900263.

[32]

Bu TL, Li J, Li HY, et al. Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules. Science, 2021, 372(6548): 1327-1332.

[33]

Fang ZH, Wang LY, Mu XJ, et al. Grain boundary engineering with self-assembled porphyrin supramolecules for highly efficient large-area perovskite photovoltaics. J Am Chem Soc, 2021, 143(45): 18989-18996.

[34]

Champion Photovoltaic Module Efficiency Chart. NREL. https://www.nrel.gov/pv/module-efficiency.html. Accessed 28 July 2022. https://www.nrel.gov/pv/module-efficiency.html

[35]

Deng YH, Peng E, Shao YC, et al. Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy Environ Sci, 2015, 8(5): 1544-1550.

[36]

Vesce L, Stefanelli M, Herterich JP, et al. Ambient air blade-coating fabrication of stable triple-cation perovskite solar modules by green solvent quenching. Sol RRL, 2021, 5(8): 2100073.

[37]

Bernard S, Jutteau S, Mejaouri S, et al. One-step step slot-die coating deposition of wide-bandgap perovskite absorber for highly efficient solar cells. Sol RRL, 2021, 5: 2100391.

[38]

Le TS, Saranin D, Gostishchev P, et al. All-slot-die-coated inverted perovskite solar cells in ambient conditions with chlorine additives. Sol RRL, 2021, 6(2): 2100807.

[39]

Barrows AT, Pearson AJ, Kwak CK, et al. Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy Environ Sci, 2014, 7(9): 2944-2950.

[40]

Bishop JE, Smith JA, Greenland C, et al. High-efficiency spray-coated perovskite solar cells utilizing vacuum-assisted solution processing. ACS Appl Mater Interfaces, 2018, 10(46): 39428-39434.

[41]

Li SG, Jiang KJ, Su MJ, et al. Inkjet printing of CH3NH3PbI3 on a mesoscopic TiO2 film for highly efficient perovskite solar cells. J Mater Chem A, 2015, 3(17): 9092-9097.

[42]

Matteocci F, Razza S, Di Giacomo F, et al. Solid-state solar modules based on mesoscopic organometal halide perovskite: A route towards the up-scaling process. Phys Chem Chem Phys, 2014, 16(9): 3918-3923.

[43]

Shen WZ, Zhao YX, Liu F Highlights of mainstream solar cell efficiencies in 2021. Front Energy, 2022, 16(1): 1-8.

[44]

Green M, Dunlop E, Hohl-Ebinger J, et al. Solar cell efficiency tables (version 58). Prog Photovolt Res Appl, 2021, 29: 657-667.

[45]

Lee D-K, Park N-G Materials and methods for high-efficiency perovskite solar modules. Sol RRL, 2021, 6(3): 2100455.

[46]

Yang MJ, Kim DH, Klein TR, et al. Highly efficient perovskite solar modules by scalable fabrication and interconnection optimization. ACS Energy Lett, 2018, 3(2): 322-328.

[47]

MacPherson S, Doherty TAS, Winchester AJ, et al. Local nanoscale phase impurities are degradation sites in halide perovskites. Nature, 2022, 607(7918): 294-300.

[48]

Tan S, Yavuz I, Weber MH, et al. Shallow iodine defects accelerate the degradation of α-phase formamidinium perovskite. Joule, 2020, 4(11): 2426-2442.

[49]

Yang CQ, Zhi R, Uller Rothmann M, et al. Toward commercialization of efficient and stable perovskite solar modules. Sol RRL, 2021, 6(3): 2100600.

[50]

Choi K, Choi H, Min J, et al. A short review on interface engineering ofperovskite solar cells: a self-assembled monolayer and its roles. Sol RRL, 2019, 4(2): 1900251.

[51]

Mahapatra A, Prochowicz D, Tavakoli MM, et al. A review of aspects of additive engineering in perovskite solar cells. J Mater Chem A, 2020, 8(1): 27-54.

[52]

Valadi K, Gharibi S, Taheri-Ledari R, et al. Metal oxide electron transport materials for perovskite solar cells: A review. Environ Chem Lett, 2021, 19(3): 2185-2207.

[53]

Mahmood K, Sarwar S, Mehran MT Current status of electron transport layers in perovskite solar cells: materials and properties. RSC Adv, 2017, 7(28): 17044-17062.

[54]

Reza KM, Mabrouk S, Qiao Q A review on tailoring PEDOT: PSS layer for improved performance of perovskite solar cells. Proc Nat Res Soc, 2018, 2: 02004.

[55]

Chen YC, Meng Q, Zhang LR, et al. SnO2-based electron transporting layer materials for perovskite solar cells: a review of recent progress. J Energy Chem, 2019, 35: 144-167.

[56]

Higuchi H, Negami T Largest highly efficient 203 × 203 mm2 CH3NH3PbI3 perovskite solar modules. J Appl Phys, 2018, 57(8S3): 08RE11.

[57]

Liu C, Yang Y, Rakstys K, et al. Tuning structural isomers of phenylenediammonium to afford efficient and stable perovskite solar cells and modules. Nat Commun, 2021, 12: 6394.

[58]

Yang MJ, Li Z, Reese MO, et al. Perovskite ink with wide processing window for scalable high-efficiency solar cells. Nat Energy, 2017, 2: 17038.

[59]

Deng YH, Zheng XP, Bai Y, et al. Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nat Energy, 2018, 3(7): 560-566.

[60]

Deng YH, Van Brackle CH, Dai XZ, et al. Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic films. Sci Adv, 2019, 5(12): eaax7537.

[61]

Lim KS, Lee DK, Lee JW, et al. 17% efficient perovskite solar mini-module via hexamethylphosphoramide (HMPA)-adduct-based large-area D-bar coating. J Mater Chem A, 2020, 8(18): 9345-9354.

[62]

Yoo JW, Jang J, Kim U, et al. Efficient perovskite solar mini-modules fabricated via bar-coating using 2-methoxyethanol-based formamidinium lead tri-iodide precursor solution. Joule, 2021, 5(9): 2420-2436.

[63]

He R, Nie S, Huang X, et al. Scalable preparation of high-performance ZnO–SnO2 cascaded electron transport layer for efficient perovskite solar modules. Sol RRL, 2021, 6: 2100639.

[64]

di Giacomo F, Shanmugam S, Fledderus H, et al. Up-scalable sheet-to-sheet production of high efficiency perovskite module and solar cells on 6-in. substrate using slot Die coating. Sol Energy Mater Sol Cells, 2018, 181: 53-59.

[65]

Bi EB, Tang WT, Chen H, et al. Efficient perovskite solar cell modules with high stability enabled by iodide diffusion barriers. Joule, 2019, 3(11): 2748-2760.

[66]

Du MY, Zhu XJ, Wang LK, et al. High- pressure nitrogen-extraction and effective passivation to attain highest large-area perovskite solar module efficiency. Adv Mater, 2020, 32(47): e2004979.

[67]

Liang C, Li PW, Gu H, et al. One-step inkjet printed perovskite in air for efficient light harvesting. Sol RRL, 2018, 2(2): 1700217.

[68]

Heo JH, Lee MH, Jang MH, et al. Highly efficient CH3NH3PbI3−xCl x mixed halide perovskite solar cells prepared by re-dissolution and crystal grain growth via spray coating. J Mater Chem A, 2016, 4(45): 17636-17642.

[69]

Heo JH, Zhang F, Xiao CX, et al. Efficient and stable graded CsPbI3−xBrx perovskite solar cells and submodules by orthogonal processable spray coating. Joule, 2021, 5(2): 481-494.

[70]

Ding Y, Ding B, Kanda H, et al. Single-crystalline TiO2 nanoparticles for stable and efficient perovskite modules. Nat Nanotechnol, 2022, 17(6): 598-605.

[71]

Ding B, Li Y, Huang SY, et al. Material nucleation/growth competition tuning towards highly reproducible planar perovskite solar cells with efficiency exceeding 20%. J Mater Chem A, 2017, 5(15): 6840-6848.

[72]

Zhou YY, Game OS, Pang SP, et al. Microstructures of organometal trihalide perovskites for solar cells: their evolution from solutions and characterization. J Phys Chem Lett, 2015, 6(23): 4827-4839.

[73]

Whitehead CB, Özkar S, Finke RG LaMer's 1950 model for particle formation of instantaneous nucleation and diffusion-controlled growth: A historical look at the model's origins, assumptions, equations, and underlying sulfur Sol formation kinetics data. Chem Mater, 2019, 31(18): 7116-7132.

[74]

Lee JW, Lee DK, Jeong DN, et al. Control of crystal growth toward scalable fabrication of perovskite solar cells. Adv Funct Mater, 2018, 29(47): 1807047.

[75]

Kwon SG, Hyeon T Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods. Small, 2011, 7: 2685-2702.

[76]

Huang FZ, Dkhissi Y, Huang WC, et al. Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells. Nano Energy, 2014, 10: 10-18.

[77]

Li X, Bi DQ, Yi CY, et al. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science, 2016, 353(6294): 58-62.

[78]

Bi C, Wang Q, Shao YC, et al. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat Commun, 2015, 6: 7747.

[79]

Pylnev M, Barbisan AM, Wei TC Effect of wettability of substrate on metal halide perovskite growth. Appl Surf Sci, 2021, 541.

[80]

Wang PY, Zhang XW, Zhou YQ, et al. Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells. Nat Commun, 2018, 9: 2225.

[81]

Dualeh A, Tétreault N, Moehl T, et al. Effect of annealing temperature on film morphology of organic-inorganic hybrid perovskite solid-state solar cells. Adv Funct Mater, 2014, 24(21): 3250-3258.

[82]

Zhang TY, Xu QL, Xu F, et al. Spontaneous low-temperature crystallization of α-FAPbI3 for highly efficient perovskite solar cells. Sci Bull, 2019, 64(21): 1608-1616.

[83]

Gu EEN, Tang XXF, Langner S, et al. Robot-based high-throughput screening of antisolvents for lead halide perovskites. Joule, 2020, 4(8): 1806-1822.

[84]

Jeon NJ, Noh JH, Kim YC, et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat Mater, 2014, 13(9): 897-903.

[85]

Taylor AD, Sun Q, Goetz KP, et al. A general approach to high-efficiency perovskite solar cells by any antisolvent. Nat Commun, 2021, 12: 1878.

[86]

Xiao MD, Huang FZ, Huang WC, et al. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew Chem Int Ed Engl, 2014, 53: 9898-9903.

[87]

Ghosh S, Mishra S, Singh T Antisolvents in perovskite solar cells: importance, issues, and alternatives. Adv Mater Interfaces, 2020, 7(18): 2000950.

[88]

Tavakoli M, Yadav P, Prochowicz D, et al. Controllable perovskite crystallization via antisolvent technique using chloride additives for highly efficient planar perovskite solar cells. Adv Energy Mater, 2019, 9(17): 1803587.

[89]

Li NX, Niu XX, Li L, et al. Liquid medium annealing for fabricating durable perovskite solar cells with improved reproducibility. Science, 2021, 373(6554): 561-567.

[90]

Wei N, Chen Y, Wang X, et al. Multi-level passivation of MAPbI3 perovskite for efficient and stable photovoltaics. Adv Funct Mater, 2021, 32: 2108944.

[91]

Wang C, Tan GY, Luo XP, et al. How to fabricate efficient perovskite solar mini-modules in lab. J Power Sources, 2020, 466: 228321.

[92]

Peng J, Kremer F, Walter D, et al. Centimetre-scale perovskite solar cells with fill factors of more than 86 per cent. Nature, 2022, 601(7894): 573-578.

[93]

Qiu LB, He SS, Ono LK, et al. Scalable fabrication of metal halide perovskite solar cells and modules. ACS Energy Lett, 2019, 4(9): 2147-2167.

[94]

Angelo CL, Mahmoud Z, Narges YN, et al. Reducing losses in perovskite large area solar technology: laser design optimization for highly efficient modules and minipanels. Adv Energy Mater, 2022, 12: 2103420.

[95]

Shim E Coating and laminating processes and techniques for textiles, 2010 Sawston Woodhead Publishing

[96]

Lee DK, Jeong DN, Ahn TK, et al. Precursor engineering for a large-area perovskite solar cell with >19% efficiency. ACS Energy Lett, 2019, 4(10): 2393-2401.

[97]

Le Berre M, Chen Y, Baigl D From convective assembly to Landau-Levich deposition of multilayered phospholipid films of controlled thickness. Langmuir, 2009, 25(5): 2554-2557.

[98]

Tadmor R Marangoni flow revisited. J Colloid Interface Sci, 2009, 332(2): 451-454.

[99]

Gu XD, Shaw L, Gu K, et al. The meniscus-guided deposition of semiconducting polymers. Nat Commun, 2018, 9: 534.

[100]

He M, Li B, Cui X, et al. Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cells. Nat Commun, 2017, 8: 16045.

[101]

Dai XZ, Deng Y, Van Brackle CH, et al. Scalable fabrication of efficient perovskite solar modules on flexible glass substrates. Adv Energy Mater, 2019, 10(1): 1903108.

[102]

Deng YH, Dong QF, Bi C, et al. Air-stable, efficient mixed-cation perovskite solar cells with Cu electrode by scalable fabrication of active layer. Adv Energy Mater, 2016, 6(11): 1600372.

[103]

Deng YH, Xu S, Chen SS, et al. Defect compensation in formamidinium–caesium perovskites for highly efficient solar mini-modules with improved photostability. Nat Energy, 2021, 6: 633-641.

[104]

Xu ZY, Chen RH, Wu YZ, et al. Br-containing alkyl ammonium salt- enabled scalable fabrication of high-quality perovskite films for efficient and stable perovskite modules. J Mater Chem A, 2019, 7(47): 26849-26857.

[105]

Zhang JW, Bu TL, Li J, et al. Two-step sequential blade-coating of high quality perovskite layers for efficient solar cells and modules. J Mater Chem A, 2020, 8(17): 8447-8454.

[106]

Zhong YF, Munir R, Li JB, et al. Blade-coated organolead triiodide perovskite solar cells with efficiency >17%: an in situ investigation. ACS Energy Lett, 2018, 3(5): 1078-1085.

[107]

Li JB, Munir R, Fan YY, et al. Phase transition control for high-performance blade-coated perovskite solar cells. Joule, 2018, 2(7): 1313-1330.

[108]

Whitaker JB, Kim DH, Larson BW, et al. Scalable slot-Die coating of high performance perovskite solar cells. Sustain Energy Fuels, 2018, 2(11): 2442-2449.

[109]

Bu TL, Ono LK, Li J, et al. Modulating crystal growth of formamidinium–caesium perovskites for over 200 cm2 photovoltaic sub-modules. Nat Energy, 2022, 7(6): 528-536.

[110]

Hamill JC Jr, Schwartz J, Loo YL Influence of solvent coordination on hybrid organic-inorganic perovskite formation. ACS Energy Lett, 2018, 3(1): 92-97.

[111]

Lee JW, Kim HS, Park NG Lewis acid-base adduct approach for high efficiency perovskite solar cells. Acc Chem Res, 2016, 49(2): 311-319.

[112]

Fan BJ, Xiong J, Zhang YY, et al. A bionic interface to suppress the coffee-ring effect for reliable and flexible perovskite modules with a near-90% yield rate. Adv Mater, 2022, 34(29): e/2201840.

[113]

Ding XY, Liu JH, Harris TAL A review of the operating limits in slot Die coating processes. AIChE J, 2016, 62(7): 2508-2524.

[114]

Li JJZ, Dagar J, Shargaieva O, et al. 20.8% slot-Die coated MAPbI3 perovskite solar cells by optimal DMSO-content and age of 2-ME based precursor inks. Adv Energy Mater, 2021, 11: 2003460.

[115]

Huang SH, Guan CK, Lee PH, et al. Perovskite solar cells: toward all slot-Die fabricated high efficiency large area perovskite solar cell using rapid near infrared heating in ambient air (adv. energy mater 37/2020). Adv Energy Mater, 2020, 10(37): 2070155.

[116]

Fievez M, Singh Rana PJ, Koh TM, et al. Slot-Die coated methylammonium-free perovskite solar cells with 18% efficiency. Sol Energy Mater Sol Cells, 2021, 230.

[117]

Vak D, Hwang K, Faulks A, et al. Solar cells: 3D printer based slot-Die coater as a lab-to-fab translation tool for solution-processed solar cells (adv. energy mater. 4/2015). Adv Energy Mater, 2015, 5(4): 1401539.

[118]

Zimmermann I, Al Atem M, Fournier O, et al. Sequentially slot-Die-coated perovskite for efficient and scalable solar cells. Adv Mater Interfaces, 2021, 8: 2100743.

[119]

Cotella G, Baker J, Worsley D, et al. One-step deposition by slot-Die coating of mixed lead halide perovskite for photovoltaic applications. Sol Energy Mater Sol Cells, 2017, 159: 362-369.

[120]

Zhang TY, Chen YT, Kan M, et al. MA cation-induced diffusional growth of low-bandgap FA-Cs perovskites driven by natural gradient annealing. Research (Wash D C), 2021, 2021: 9765106.

[121]

Du MY, Zhao S, Duan LJ, et al. Surface redox engineering of vacuum-deposited NiOx for top-performance perovskite solar cells and modules. Joule, 2022, 6(8): 1931-1943.

[122]

Yang ZC, Zhang WJ, Wu SH, et al. Slot-Die coating large-area formamidinium-cesium perovskite film for efficient and stable parallel solar module. Sci Adv, 2021, 7(18): eabg3749.

[123]

Hwang K, Jung YS, Heo YJ, et al. Toward large scale roll-to-roll production of fully printed perovskite solar cells. Adv Mater, 2015, 27(7): 1241-1247.

[124]

Dou B, Whitaker JB, Bruening K, et al. Roll-to-roll printing of perovskite solar cells. ACS Energy Lett, 2018, 3: 2558-2565.

[125]

Peng XJ, Yuan J, Shen S, et al. Solar cells: perovskite and organic solar cells fabricated by inkjet printing: progress and prospects. Adv Funct Mater, 2017, 27(41): 1703704.

[126]

Wei ZH, Chen HN, Yan KY, et al. Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells. Angew Chem Int Ed Engl, 2014, 53(48): 13239-13243.

[127]

Schackmar F, Eggers H, Frericks M, et al. Perovskite solar cells with all-inkjet-printed absorber and charge transport layers. Adv Mater Technol, 2020, 6: 2000271.

[128]

Eggers H, Schackmar F, Abzieher T, et al. Inkjet-printed micrometer-thick perovskite solar cells with large columnar grains. Adv Energy Mater, 2019, 10: 1903184.

[129]

Gao BW, Meng J Flexible CH3NH3PbI3 perovskite solar cells with high stability based on all inkjet printing. Sol Energy, 2021, 230: 598-604.

[130]

Zhang LH, Chen S, Wang XZ, et al. Ambient inkjet-printed high-efficiency perovskite solar cells: manipulating the spreading and crystallization behaviors of picoliter perovskite droplets. Sol RRL, 2021, 5: 2100106.

[131]

Deegan Pattern formation in drying drops. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics, 2000, 61(1): 475-485.

[132]

Mathies F, Abzieher T, Hochstuhl A, et al. Multipass inkjet printed planar methylammonium lead iodide perovskite solar cells. J Mater Chem A, 2016, 4(48): 19207-19213.

[133]

Chou LH, Chan JMW, Liu CL Progress in spray-coated perovskite films for solar cell applications. Sol RRL, 2022, 6(4): 2101035.

[134]

Shao YY, Zhang CY, Wang S, et al. Insight into the interfacial elastic contact in stacking perovskite solar cells. Adv Mater Interfaces, 2019, 6(7): 1900157.

[135]

Cai HK, Liang XJ, Ye XF, et al. High efficiency over 20% of perovskite solar cells by spray coating via a simple process. ACS Appl Energy Mater, 2020, 3(10): 9696-9702.

[136]

Kavadiya S, Niedzwiedzki DM, Huang S, et al. Electrospray-assisted fabrication of moisture-resistant and highly stable perovskite solar cells at ambient conditions. Adv Energy Mater, 2017, 7(18): 1700210.

[137]

Hong SC, Lee G, Ha K, et al. Precise morphology control and continuous fabrication of perovskite solar cells using droplet-controllable electrospray coating system. ACS Appl Mater Interfaces, 2017, 9: 7879-7884.

[138]

Lin PY, Chen YY, Guo TF, et al. Electrospray technique in fabricating perovskite-based hybrid solar cells under ambient conditions. RSC Adv, 2017, 7(18): 10985-10991.

[139]

Chen HB, Ding XH, Pan X, et al. Comprehensive studies of air-brush spray deposition used in fabricating high-efficiency CH3NH3PbI3 perovskite solar cells: combining theories with practices. J Power Sour, 2018, 402: 82-90.

[140]

Ishihara H, Chen WJ, Chen YC, et al. Photovoltaics: electrohydrodynamically assisted deposition of efficient perovskite photovoltaics (adv. mater. interfaces 9/2016). Adv Mater Interfaces, 2016, 3(9): 1500762.

[141]

Remeika M, Ruiz Raga SR, Zhang SJ, et al. Transferrable optimization of spray-coated PbI2 films for perovskite solar cell fabrication. J Mater Chem A, 2017, 5(12): 5709-5718.

[142]

Mohamad D, Griffin J, Bracher C, et al. Spray-cast multilayer organometal perovskite solar cells fabricated in air. Adv Energy Mater, 2016, 6: 1600994.

[143]

Sanjib D, Bin Y, Gong G, et al. High-performance flexible perovskite solar cells by using a combination of ultrasonic spray-coating and low thermal budget photonic curing. ACS Photon, 2015, 2(6): 680-686.

[144]

Guo AZ, Chou LH, Yang SH, et al. Multi-channel pumped ultrasonic spray-coating for high-throughput and scalable mixed halide perovskite solar cells. Adv Mater Interfaces, 2020, 8: 2001509.

[145]

Uličná S, Dou BJ, Kim DH, et al. Scalable deposition of high efficiency perovskite solar cells by spray-coating. ACS Appl Energy Mater, 2018, 1(5): 1853-1857.

[146]

Green MA, Hishikawa Y, Dunlop ED, et al. Solar cell efficiency tables (version 51). Prog Photovolt Res Appl, 2017, 26(3): 12.

[147]

Hu Y, Chu YM, Wang QF, et al. Standardizing perovskite solar modules beyond cells. Joule, 2019, 3(9): 2076-2085.

[148]

Li Z, Klein TR, Kim DH, et al. Scalable fabrication of perovskite solar cells. Nat Rev Mater, 2018, 3: 18017.

[149]

Zhao XM, Liu TR, Burlingame QC, et al. Accelerated aging of all-inorganic, interface-stabilized perovskite solar cells. Science, 2022, 377(6603): 307-310.

[150]

Gao LL, Chen L, Huang SY, et al. Series and parallel module design for large-area perovskite solar cells. ACS Appl Energy Mater, 2019, 2(5): 3851-3859.

[151]

Wilkinson B, Chang NL, Green MA, et al. Scaling limits to large area perovskite solar cell efficiency. Prog Photovolt Res Appl, 2018, 26(8): 659-674.

[152]

Kim DH, Whitaker JB, Li Z, et al. Outlook and challenges of perovskite solar cells toward terawatt-scale photovoltaic module technology. Joule, 2018, 2(8): 1437-1451.

[153]

Hambsch M, Lin QQ, Armin A, et al. Efficient, monolithic large area organohalide perovskite solar cells. J Mater Chem A, 2016, 4(36): 13830-13836.

[154]

Matteocci F, Cinà L, Di Giacomo FFD, et al. High efficiency photovoltaic module based on mesoscopic organometal halide perovskite. Prog Photovolt Res Appl, 2016, 24(4): 436-445.

[155]

Werner J, Boyd CC, Moot T, et al. Learning from existing photovoltaic technologies to identify alternative perovskite module designs. Energy Environ Sci, 2020, 13(10): 3393-3403.

[156]

Kato Y, Ono L, Lee MV, et al. Perovskite solar cells: silver iodide formation in methyl ammonium lead iodide perovskite solar cells with silver top electrodes. Adv Mater Interfaces, 2015, 2: 1500195.

[157]

Jeong M, Choi IW, Yim K, et al. Large-area perovskite solar cells employing spiro-Naph hole transport material. Nat Photon, 2022, 16(2): 119-125.

[158]

Bayer L, Ye XY, Lorenz P, et al. Studies on perovskite film ablation and scribing with ns-, ps- and fs-laser pulses. Appl Phys A, 2017, 123(10): 619.

[159]

Ernst M, Herterich J-P, Margenfeld C, et al. Multilayer blade-coating fabrication of methylammonium-free perovskite photovoltaic modules with 66 cm2 active area. Sol RRL, 2021, 6: 2100535.

[160]

Galagan Y Perovskite solar cells: toward industrial-scale methods. J Phys Chem Lett, 2018, 9(15): 4326-4335.

[161]

Moon SJ, Yum JH, Löfgren L, et al. Laser-scribing patterning for the production of organometallic halide perovskite solar modules. IEEE J Photovolt, 2015, 5(4): 1087-1092.

[162]

Rong YG, Ming Y, Ji WX, et al. Toward industrial-scale production of perovskite solar cells: screen printing, slot-Die coating, and emerging techniques. J Phys Chem Lett, 2018, 9(10): 2707-2713.

[163]

da Silva Filho JMC, Gonçalves AD, Marques FC, et al. A review on the development of metal grids for the upscaling of perovskite solar cells and modules. Sol RRL, 2021, 6: 2100865.

[164]

Asghar MI, Zhang J, Wang H, et al. Device stability of perovskite solar cells—a review. Renew Sustain Energy Rev, 2017, 77: 131-146.

[165]

Li NX, Niu XX, Chen Q, et al. Towards commercialization: The operational stability of perovskite solar cells. Chem Soc Rev, 2020, 49(22): 8235-8286.

[166]

Wang D, Wright M, Elumalai NK, et al. Stability of perovskite solar cells. Sol Energy Mater Sol Cells, 2016, 147: 255-275.

[167]

Zhao Y, Zhou WK, Han ZY, et al. Effects of ion migration and improvement strategies for the operational stability of perovskite solar cells. Phys Chem Chem Phys, 2021, 23(1): 94-106.

[168]

Yang ZC, Liu ZH, Ahmadi V, et al. Recent progress on metal halide perovskite solar minimodules. Sol RRL, 2021, 6(3): 2100458.

[169]

Park NG, Zhu K Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nat Rev Mater, 2020, 5(5): 333-350.

[170]

Wu SH, Chen R, Zhang SS, et al. A chemically inert bismuth interlayer enhances long-term stability of inverted perovskite solar cells. Nat Commun, 2019, 10(1): 1161.

[171]

Domanski K, Correa-Baena JP, Mine N, et al. Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells. ACS Nano, 2016, 10(6): 6306-6314.

[172]

Zhang SSS, Liu ZZH, Zhang WWJ, et al. Barrier designs in perovskite solar cells for long-term stability. Adv Energy Mater, 2020, 10(35): 2001610.

[173]

Luo Q, Ma H, Hou QZ, et al. All-carbon-electrode-based endurable flexible perovskite solar cells. Adv Funct Mater, 2018, 28(11): 1706777.

[174]

Zhou CH, Lin SY Carbon electrode-based perovskite solar cells: effect of bulk engineering and interface engineering on the power conversion properties. Sol RRL, 2019, 4(2): 1900190.

[175]

Yuan JB, Rujisamphan N, Ma WL, et al. Perspective on the perovskite quantum dots for flexible photovoltaics. J Energy Chem, 2021, 62: 505-507.

[176]

Chen ZZ, Guo YW, Wertz E, et al. Merits and challenges of ruddlesden-popper soft halide perovskites in electro-optics and optoelectronics. Adv Mater, 2019, 31(1

AI Summary AI Mindmap
PDF

151

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/