Metal–Organic Framework-Based Solid Acid Materials for Biomass Upgrade

Yutian Qin , Jun Guo , Meiting Zhao

Transactions of Tianjin University ›› 2021, Vol. 27 ›› Issue (6) : 434 -449.

PDF
Transactions of Tianjin University ›› 2021, Vol. 27 ›› Issue (6) : 434 -449. DOI: 10.1007/s12209-021-00298-4
Review

Metal–Organic Framework-Based Solid Acid Materials for Biomass Upgrade

Author information +
History +
PDF

Abstract

Biomass is a green and producible source of energy and chemicals. Hence, developing high-efficiency catalysts for biomass utilization and transformation is urgently demanded. Metal–organic framework (MOF)-based solid acid materials have been considered as promising catalysts in biomass transformation. In this review, we first introduce the genre of Lewis acid and Brønsted acid sites commonly generated in MOFs or MOF-based composites. Then, the methods for the generation and adjustment of corresponding acid sites are overviewed. Next, the catalytic applications of MOF-based solid acid materials in various biomass transformation reactions are summarized and discussed. Furthermore, based on our personal insights, the challenges and outlook on the future development of MOF-based solid acid catalysts are provided. We hope that this review will provide an instructive roadmap for future research on MOFs and MOF-based composites for biomass transformation.

Keywords

Metal–organic framework / Solid acid / Catalysis / Biomass / Glucose

Cite this article

Download citation ▾
Yutian Qin, Jun Guo, Meiting Zhao. Metal–Organic Framework-Based Solid Acid Materials for Biomass Upgrade. Transactions of Tianjin University, 2021, 27(6): 434-449 DOI:10.1007/s12209-021-00298-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mika LT, Cséfalvay E, Németh Á Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability. Chem Rev, 2018, 118(2): 505-613.

[2]

Prabhu P, Wan Y, Lee JM Electrochemical conversion of biomass derived products into high-value chemicals. Matter, 2020, 3(4): 1162-1177.

[3]

Ling YF, Ma QL, Yu YF, et al. Optimization strategies for selective CO2 electroreduction to fuels. Trans Tianjin Univ, 2021, 27(3): 180-200.

[4]

Centi G Smart catalytic materials for energy transition. SmartMat, 2020, 1(1): e1005.

[5]

Dusselier M, van Wouwe P, Dewaele A, et al. Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis. Energy Environ Sci, 2013, 6(5): 1415-1442.

[6]

Jing YX, Guo Y, Xia QN, et al. Catalytic production of value-added chemicals and liquid fuels from lignocellulosic biomass. Chem, 2019, 5(10): 2520-2546.

[7]

Tao L, Yan TH, Li WQ, et al. Toward an integrated conversion of 5-hydroxymethylfurfural and ethylene for the production of renewable p-xylene. Chem, 2018, 4(9): 2212-2227.

[8]

van Putten RJ, van der Waal JC, de Jong E, et al. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev, 2013, 113(3): 1499-1597.

[9]

Zhong JW, Pérez-Ramírez J, Yan N Biomass valorisation over polyoxometalate-based catalysts. Green Chem, 2021, 23(1): 18-36.

[10]

Fang RQ, Dhakshinamoorthy A, Li YW, et al. Metal organic frameworks for biomass conversion. Chem Soc Rev, 2020, 49(11): 3638-3687.

[11]

Herbst A, Janiak C MOF catalysts in biomass upgrading towards value-added fine chemicals. CrystEngComm, 2017, 19(29): 4092-4117.

[12]

Hosono N, Uemura T Metal–organic frameworks for macromolecular recognition and separation. Matter, 2020, 3(3): 652-663.

[13]

Gao MY, Song BQ, Sensharma D, et al. Crystal engineering of porous coordination networks for C3 hydrocarbon separation. SmartMat, 2021, 2(1): 38-55.

[14]

Guo J, Wan Y, Zhu YF, et al. Advanced photocatalysts based on metal nanoparticle/metal–organic framework composites. Nano Res, 2020

[15]

Feng L, Wang KY, Lv XL, et al. Hierarchically porous metal–organic frameworks: synthetic strategies and applications. Natl Sci Rev, 2020, 7(11): 1743-1758.

[16]

Zhao T, Li SH, Xiao YX, et al. Template-free synthesis to micro-meso-macroporous hierarchy in nanostructured MIL-101(Cr) with enhanced catalytic activity. Sci China Mater, 2021, 64(1): 252-258.

[17]

Liu YL, Gao PF, Huang CZ, et al. Shape- and size-dependent catalysis activities of iron-terephthalic acid metal–organic frameworks. Sci China Chem, 2015, 58(10): 1553-1560.

[18]

Furukawa H, Cordova KE, O'Keeffe M, et al. The chemistry and applications of metal–organic frameworks. Science, 2013, 341(6149): 1230444.

[19]

Liu JW, Chen LF, Cui H, et al. Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem Soc Rev, 2014, 43(16): 6011-6061.

[20]

Gong W, Liu Y, Li HY, et al. Metal–organic frameworks as solid Brønsted acid catalysts for advanced organic transformations. Coord Chem Rev, 2020, 420: 213400.

[21]

Niu Z, Bhagya Gunatilleke WDC, Sun Q, et al. Metal–organic framework anchored with a lewis pair as a new paradigm for catalysis. Chem, 2018, 4(11): 2587-2599.

[22]

Dai JJ, Zhang HB Recent advances in selective C-C bond coupling for ethanol upgrading over balanced Lewis acid-base catalysts. Sci China Mater, 2019, 62(11): 1642-1654.

[23]

Yan JL, Jiang S, Ji SF, et al. Metal–organic framework MIL-53(Al): synthesis, catalytic performance for the Friedel-Crafts acylation, and reaction mechanism. Sci China Chem, 2015, 58(10): 1544-1552.

[24]

Dissegna S, Epp K, Heinz WR, et al. Defective metal–organic frameworks. Adv Mater, 2018, 30(37): 1704501.

[25]

Wang ZQ, Cohen SM Postsynthetic modification of metal–organic frameworks. Chem Soc Rev, 2009, 38(5): 1315-1329.

[26]

Hall JN, Bollini P Structure, characterization, and catalytic properties of open-metal sites in metal organic frameworks. React Chem Eng, 2019, 4(2): 207-222.

[27]

Qin JS, Yuan S, Lollar C, et al. Stable metal–organic frameworks as a host platform for catalysis and biomimetics. Chem Commun Camb Engl, 2018, 54(34): 4231-4249.

[28]

Chui SSY, Lo SMF, Charmant JPH, et al. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3] n. Science, 1999, 283(5405): 1148-1150.

[29]

Herbst A, Khutia A, Janiak C Brønsted instead of Lewis acidity in functionalized MIL-101Cr MOFs for efficient heterogeneous (nano-MOF) catalysis in the condensation reaction of aldehydes with alcohols. Inorg Chem, 2014, 53(14): 7319-7333.

[30]

Rosi NL, Kim J, Eddaoudi M, et al. Rod packings and metal–organic frameworks constructed from rod-shaped secondary building units. J Am Chem Soc, 2005, 127(5): 1504-1518.

[31]

Dhakshinamoorthy A, Santiago-Portillo A, Asiri AM, et al. Engineering UiO-66 metal organic framework for heterogeneous catalysis. ChemCatChem, 2019, 11(3): 899-923.

[32]

Mondloch JE, Bury W, Fairen-Jimenez D, et al. Vapor-phase metalation by atomic layer deposition in a metal–organic framework. J Am Chem Soc, 2013, 135(28): 10294-10297.

[33]

Mautschke HH, Drache F, Senkovska I, et al. Catalytic properties of pristine and defect-engineered Zr-MOF-808 metal organic frameworks. Catal Sci Technol, 2018, 8(14): 3610-3616.

[34]

Kim HK, Yun WS, Kim MB, et al. A chemical route to activation of open metal sites in the copper-based metal–organic framework materials HKUST-1 and Cu-MOF-2. J Am Chem Soc, 2015, 137(31): 10009-10015.

[35]

Férey G, Serre C, Mellot-Draznieks C, et al. A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction. Angew Chem Int Ed Engl, 2004, 43(46): 6296-6301.

[36]

Férey G, Mellot-Draznieks C, Serre C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science, 2005, 309(5743): 2040-2042.

[37]

Si YN, Wang WJ, El-Sayed ESM, et al. Use of breakthrough experiment to evaluate the performance of hydrogen isotope separation for metal–organic frameworks M-MOF-74 (M = Co, Ni, Mg, Zn). Sci China Chem, 2020, 63(7): 881-889.

[38]

Dietzel PDC, Johnsen RE, Blom R, et al. Structural changes and coordinatively unsaturated metal atoms on dehydration of honeycomb analogous microporous metal–organic frameworks. Chem A Eur J, 2008, 14(8): 2389-2397.

[39]

Mukherjee S, Manna B, Desai AV, et al. Harnessing Lewis acidic open metal sites of metal–organic frameworks: the foremost route to achieve highly selective benzene sorption over cyclohexane. Chem Commun (Camb), 2016, 52(53): 8215-8218.

[40]

Cavka JH, Jakobsen S, Olsbye U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc, 2008, 130(42): 13850-13851.

[41]

Klet RC, Liu Y, Wang TC, et al. Evaluation of Brønsted acidity and proton topology in Zr- and Hf-based metal–organic frameworks using potentiometric acid–base titration. J Mater Chem A, 2016, 4(4): 1479-1485.

[42]

Planas N, Mondloch JE, Tussupbayev S, et al. Defining the proton topology of the Zr6-based metal–organic framework NU-1000. J Phys Chem Lett, 2014, 5(21): 3716-3723.

[43]

Feng D, Wang K, Su J, et al. A highly stable zeotype mesoporous zirconium metal–organic framework with ultralarge pores. Angew Chem Int Ed Engl, 2015, 54(1): 149-154.

[44]

Furukawa H, Gándara F, Zhang YB, et al. Water adsorption in porous metal–organic frameworks and related materials. J Am Chem Soc, 2014, 136(11): 4369-4381.

[45]

Moon SY, Liu Y, Hupp JT, et al. Instantaneous hydrolysis of nerve-agent simulants with a six-connected zirconium-based metal–organic framework. Angew Chem Int Ed Engl, 2015, 54(23): 6795-6799.

[46]

Liu YY, Klet RC, Hupp JT, et al. Probing the correlations between the defects in metal–organic frameworks and their catalytic activity by an epoxide ring-opening reaction. Chem Commun, 2016, 52(50): 7806-7809.

[47]

Yang D, Bernales V, Islamoglu T, et al. Tuning the surface chemistry of metal organic framework nodes: proton topology of the metal-oxide-like Zr6 nodes of UiO-66 and NU-1000. J Am Chem Soc, 2016, 138(46): 15189-15196.

[48]

Taddei M When defects turn into virtues: the curious case of zirconium-based metal–organic frameworks. Coord Chem Rev, 2017, 343: 1-24.

[49]

Feng X, Hajek J, Jena HS, et al. Engineering a highly defective stable UiO-66 with tunable Lewis-Brønsted acidity: the role of the hemilabile linker. J Am Chem Soc, 2020, 142(6): 3174-3183.

[50]

Jiang JC, Gándara F, Zhang YB, et al. Superacidity in sulfated metal–organic framework-808. J Am Chem Soc, 2014, 136(37): 12844-12847.

[51]

Ji PF, Feng X, Oliveres P, et al. Strongly lewis acidic metal–organic frameworks for continuous flow catalysis. J Am Chem Soc, 2019, 141(37): 14878-14888.

[52]

Trickett CA, Osborn Popp TM, Su J, et al. Identification of the strong Brønsted acid site in a metal–organic framework solid acid catalyst. Nat Chem, 2019, 11(2): 170-176.

[53]

Wu H, Chua YS, Krungleviciute V, et al. Unusual and highly tunable missing-linker defects in zirconium metal–organic framework UiO-66 and their important effects on gas adsorption. J Am Chem Soc, 2013, 135(28): 10525-10532.

[54]

Xu ZM, Cao JZ, Chen X, et al. Enhancing photocatalytic performance of NH2-UIO66 by defective structural engineering. Trans Tianjin Univ, 2021, 27(2): 147-154.

[55]

Vermoortele F, Bueken B, Le Bars G, et al. Synthesis modulation as a tool to increase the catalytic activity of metal–organic frameworks: the unique case of UiO-66(Zr). J Am Chem Soc, 2013, 135(31): 11465-11468.

[56]

Song Y, Feng X, Chen JS, et al. Multistep engineering of synergistic catalysts in a metal–organic framework for tandem C-O bond cleavage. J Am Chem Soc, 2020, 142(10): 4872-4882.

[57]

Guillerm V, Xu H, Albalad J, et al. Postsynthetic selective ligand cleavage by solid-gas phase ozonolysis fuses micropores into mesopores in metal–organic frameworks. J Am Chem Soc, 2018, 140(44): 15022-15030.

[58]

Ji P, Drake T, Murakami A, et al. Tuning Lewis acidity of metal–organic frameworks via perfluorination of bridging ligands: spectroscopic, theoretical, and catalytic studies. J Am Chem Soc, 2018, 140(33): 10553-10561.

[59]

Timofeeva MN, Panchenko VN, Jun JW, et al. Effects of linker substitution on catalytic properties of porous zirconium terephthalate UiO-66 in acetalization of benzaldehyde with methanol. Appl Catal A Gen, 2014, 471: 91-97.

[60]

Vermoortele F, Vandichel M, van de Voorde B, et al. Electronic effects of linker substitution on Lewis acid catalysis with metal–organic frameworks. Angew Chem Int Ed Engl, 2012, 51(20): 4887-4890.

[61]

Zhang Z, Liu YW, Tian HR, et al. Polyoxometalate-based metal–organic framework fractal crystals. Matter, 2020, 2(1): 250-260.

[62]

Wang FF, Chen ZJ, Chen HY, et al. Interplay of Lewis and Brønsted acid sites in Zr-based metal–organic frameworks for efficient esterification of biomass-derived levulinic acid. ACS Appl Mater Interfaces, 2019, 11(35): 32090-32096.

[63]

Ragon F, Campo B, Yang QY, et al. Acid-functionalized UiO-66(Zr) MOFs and their evolution after intra-framework cross-linking: structural features and sorption properties. J Mater Chem A, 2015, 3(7): 3294-3309.

[64]

Tian YM, Liang G, Fan T, et al. Grafting free carboxylic acid groups onto the pore surface of 3D porous coordination polymers for high proton conductivity. Chem Mater, 2019, 31(20): 8494-8503.

[65]

Biswas S, Zhang J, Li ZB, et al. Enhanced selectivity of CO2 over CH4 in sulphonate-, carboxylate- and iodo-functionalized UiO-66 frameworks. Dalton Trans, 2013, 42(13): 4730-4737.

[66]

Lin Foo M, Horike S, Fukushima T, et al. Ligand-based solid solution approach to stabilisation of sulphonic acid groups in porous coordination polymer Zr6O4(OH)4(BDC)6 (UiO-66). Dalton Trans, 2012, 41(45): 13791-13794.

[67]

Hu Z, Peng Y, Gao Y, et al. Direct synthesis of hierarchically porous metal–organic frameworks with high stability and strong Brønsted acidity: the decisive role of hafnium in efficient and selective fructose dehydration. Chem Mater, 2016, 28(8): 2659-2667.

[68]

Akiyama G, Matsuda R, Sato H, et al. Cellulose hydrolysis by a new porous coordination polymer decorated with sulfonic acid functional groups. Adv Mater, 2011, 23(29): 3294-3297.

[69]

Ma DX, Li BY, Shi Z Multi-functional sites catalysts based on post-synthetic modification of metal–organic frameworks. Chin Chem Lett, 2018, 29(6): 827-830.

[70]

Tanabe KK, Cohen SM Postsynthetic modification of metal–organic frameworks: a progress report. Chem Soc Rev, 2011, 40(2): 498-519.

[71]

Gadzikwa T, Farha OK, Mulfort KL, et al. A Zn-based, pillared paddlewheel MOF containing free carboxylic acids via covalent post-synthesis elaboration. Chem Commun, 2009, 25: 3720-3722.

[72]

Garibay SJ, Wang Z, Cohen SM Evaluation of heterogeneous metal–organic framework organocatalysts prepared by postsynthetic modification. Inorg Chem, 2010, 49(17): 8086-8091.

[73]

Williams K, Meng L, Lee S, et al. Imparting Brønsted acidity into a zeolitic imidazole framework. Inorg Chem Front, 2016, 3(3): 393-396.

[74]

Chen JZ, Li KG, Chen LM, et al. Conversion of fructose into 5-hydroxymethylfurfural catalyzed by recyclable sulfonic acid-functionalized metal–organic frameworks. Green Chem, 2014, 16(5): 2490-2499.

[75]

Li BY, Zhang YM, Ma DX, et al. A strategy toward constructing a bifunctionalized MOF catalyst: post-synthetic modification of MOFs on organic ligands and coordinatively unsaturated metal sites. Chem Commun, 2012, 48(49): 6151-6153.

[76]

Britt D, Lee C, Uribe-Romo FJ, et al. Ring-opening reactions within porous metal–organic frameworks. Inorg Chem, 2010, 49(14): 6387-6389.

[77]

Phang WJ, Jo H, Lee WR, et al. Superprotonic conductivity of a UiO-66 framework functionalized with sulfonic acid groups by facile postsynthetic oxidation. Angew Chem Int Ed, 2015, 54(17): 5142-5146.

[78]

Feng L, Wang KY, Powell J, et al. Controllable synthesis of metal–organic frameworks and their hierarchical assemblies. Matter, 2019, 1(4): 801-824.

[79]

Dhakshinamoorthy A, Garcia H Catalysis by metal nanoparticles embedded on metal–organic frameworks. Chem Soc Rev, 2012, 41(15): 5262-5284.

[80]

Buru CT, Farha OK Strategies for incorporating catalytically active polyoxometalates in metal–organic frameworks for organic transformations. ACS Appl Mater Interfaces, 2020, 12(5): 5345-5360.

[81]

Chen LY, Xu Q Metal–organic framework composites for catalysis. Matter, 2019, 1(1): 57-89.

[82]

Yang L, Naruke H, Yamase T A novel organic/inorganic hybrid nanoporous material incorporating Keggin-type polyoxometalates. Inorg Chem Commun, 2003, 6(8): 1020-1024.

[83]

Sun CY, Liu SX, Liang DD, et al. Highly stable crystalline catalysts based on a microporous metal−organic framework and polyoxometalates. J Am Chem Soc, 2009, 131(5): 1883-1888.

[84]

Ahn S, Nauert SL, Buru CT, et al. Pushing the limits on metal–organic frameworks as a catalyst support: NU-1000 supported tungsten catalysts for o-xylene isomerization and disproportionation. J Am Chem Soc, 2018, 140(27): 8535-8543.

[85]

Paille G, Gomez-Mingot M, Roch-Marchal C, et al. A fully noble metal-free photosystem based on cobalt-polyoxometalates immobilized in a porphyrinic metal–organic framework for water oxidation. J Am Chem Soc, 2018, 140(10): 3613-3618.

[86]

Swift TD, Bagia C, Choudhary V, et al. Kinetics of homogeneous Brønsted acid catalyzed fructose dehydration and 5-hydroxymethyl furfural rehydration: a combined experimental and computational study. ACS Catal, 2014, 4(1): 259-267.

[87]

Choudhary V, Mushrif SH, Ho C, et al. Insights into the interplay of Lewis and Brønsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl)furfural and levulinic acid in aqueous media. J Am Chem Soc, 2013, 135(10): 3997-4006.

[88]

Corma A, Iborra S, Velty A Chemical routes for the transformation of biomass into chemicals. Chem Rev, 2007, 107(6): 2411-2502.

[89]

Yang XK, Li T, Tang K, et al. Highly efficient conversion of terpenoid biomass to jet-fuel range cycloalkanes in a biphasic tandem catalytic process. Green Chem, 2017, 19(15): 3566-3573.

[90]

Voß D, Pickel H, Albert J Improving the fractionated catalytic oxidation of lignocellulosic biomass to formic acid and cellulose by using design of experiments. ACS Sustain Chem Eng, 2019, 7(11): 9754-9762.

[91]

Wang KF, Liu Y, Wu WF, et al. Production of levulinic acid via cellulose conversion over metal oxide-loaded MOF catalysts in aqueous medium. Catal Lett, 2020, 150(2): 322-331.

[92]

Akiyama G, Matsuda R, Sato H, et al. Catalytic glucose isomerization by porous coordination polymers with open metal sites. Chem Asian J, 2014, 9(10): 2772-2777.

[93]

Luo QX, Zhang YB, Qi L, et al. Glucose isomerization and epimerization over metal–organic frameworks with single-site active centers. ChemCatChem, 2019, 11(7): 1903-1909.

[94]

Rojas-Buzo S, Corma A, Boronat M, et al. Unraveling the reaction mechanism and active sites of metal–organic frameworks for glucose transformations in water: experimental and theoretical studies. ACS Sustain Chem Eng, 2020, 8(43): 16143-16155.

[95]

Liu LM, Chen ZJ, Wang JJ, et al. Imaging defects and their evolution in a metal–organic framework at sub-unit-cell resolution. Nat Chem, 2019, 11(7): 622-628.

[96]

Chang X, Zhang CY, Gao L, et al. Tandem biocatalysis by CotA-TJ102@UIO-66-NH2 and novozym 435 for highly selective transformation of HMF into FDCA. Trans Tianjin Univ, 2019, 25(5): 488-496.

[97]

Wang HL, Song Y, Liu X, et al. Preparation of anisotropic MnO2 nanocatalysts for selective oxidation of benzyl alcohol and 5-hydroxymethylfurfural. Trans Tianjin Univ, 2020, 26(5): 382-390.

[98]

Zhang Y, Degirmenci V, Li C, et al. Phosphotungstic acid encapsulated in metal–organic framework as catalysts for carbohydrate dehydration to 5-hydroxymethylfurfural. Chemsuschem, 2011, 4(1): 59-64.

[99]

Su Y, Chang GG, Zhang ZG, et al. Catalytic dehydration of glucose to 5-hydroxymethylfurfural with a bifunctional metal–organic framework. AIChE J, 2016, 62(12): 4403-4417.

[100]

Yabushita M, Li P, Islamoglu T, et al. Selective metal–organic framework catalysis of glucose to 5-hydroxymethylfurfural using phosphate-modified NU-1000. Ind Eng Chem Res, 2017, 56(25): 7141-7148.

[101]

Pagis C, Ferbinteanu M, Rothenberg G, et al. Lanthanide-based metal organic frameworks: synthetic strategies and catalytic applications. ACS Catal, 2016, 6(9): 6063-6072.

[102]

Burnett DL, Oozeerally R, Pertiwi R, et al. A hydrothermally stable ytterbium metal–organic framework as a bifunctional solid-acid catalyst for glucose conversion. Chem Commun, 2019, 55(76): 11446-11449.

[103]

Qu HN, Liu BY, Gao GH, et al. Metal–organic framework containing Brønsted acidity and Lewis acidity for efficient conversion glucose to levulinic acid. Fuel Process Technol, 2019, 193: 1-6.

[104]

Dusselier M, Sels BF, et al. Boucher-Jacobs C, Bozell JJ, Chen EY, et al. Selective catalysis for cellulose conversion to lactic acid and other α-hydroxy acids. Selective catalysis for renewable feedstocks and chemicals, 2014 Berlin Springer 98-108.

[105]

Lu XL, Wang LX, Lu XY Catalytic conversion of sugars to methyl lactate over Mg-MOF-74 in near-critical methanol solutions. Catal Commun, 2018, 110: 23-27.

[106]

Murillo B, Zornoza B, de la Iglesia O, et al. Chemocatalysis of sugars to produce lactic acid derivatives on zeolitic imidazolate frameworks. J Catal, 2016, 334: 60-67.

[107]

Murillo B, Zornoza B, de la Iglesia O, et al. (2019) Tin-carboxylate MOFs for sugar transformation into methyl lactate. Eur J Inorg Chem, 2019, 21: 2624-2629.

[108]

Choudhary V, Sandler SI, Vlachos DG Conversion of xylose to furfural using Lewis and Brønsted acid catalysts in aqueous media. ACS Catal, 2012, 2(9): 2022-2028.

[109]

Nakagawa Y, Yabushita M, Tomishige K Reductive conversion of biomass-derived furancarboxylic acids with retention of carboxylic acid moiety. Trans Tianjin Univ, 2021, 27(3): 165-179.

[110]

Liu Y, Ma CJ, Huang CX, et al. Efficient conversion of xylose into furfural using sulfonic acid-functionalized metal–organic frameworks in a biphasic system. Ind Eng Chem Res, 2018, 57(49): 16628-16634.

[111]

Chatterjee A, Hu XJ, Lam FL-Y A dual acidic hydrothermally stable MOF-composite for upgrading xylose to furfural. Appl Catal A: Gen, 2018, 566: 130-139.

[112]

Cirujano FG, Corma A, Llabrési Xamena FX Conversion of levulinic acid into chemicals: synthesis of biomass derived levulinate esters over Zr-containing MOFs. Chem Eng Sci, 2015, 124: 52-60.

[113]

Caratelli C, Hajek J, Cirujano FG, et al. Nature of active sites on UiO-66 and beneficial influence of water in the catalysis of Fischer esterification. J Catal, 2017, 352: 401-414.

[114]

Wang ZH, Chen QW Conversion of 5-hydroxymethylfurfural into 5-ethoxymethylfurfural and ethyl levulinate catalyzed by MOF-based heteropolyacid materials. Green Chem, 2016, 18(21): 5884-5889.

[115]

Lin Q, Li YH, Tang ZR, et al. Valorization of biomass-derived platform molecules via photoredox sustainable catalysis. Trans Tianjin Univ, 2020, 26(5): 325-340.

[116]

Zhao M, Yuan K, Wang Y, et al. Metal–organic frameworks as selectivity regulators for hydrogenation reactions. Nature, 2016, 539(7627): 76-80.

[117]

Assary RS, Curtiss LA, Dumesic JA Exploring meerwein-ponndorf-verley reduction chemistry for biomass catalysis using a first-principles approach. ACS Catal, 2013, 3(12): 2694-2704.

[118]

Valekar AH, Lee M, Yoon JW, et al. Catalytic transfer hydrogenation of furfural to furfuryl alcohol under mild conditions over Zr-MOFs: exploring the role of metal node coordination and modification. ACS Catal, 2020, 10(6): 3720-3732.

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/