Coupling of Cu Catalyst and Phosphonated Ru Complex Light Absorber with TiO2 as Bridge to Achieve Superior Visible Light CO2 Photoreduction

Rongjie Xu , Hua Xu , Shangbo Ning , Qiqi Zhang , Zhongshan Yang , Jinhua Ye

Transactions of Tianjin University ›› 2020, Vol. 26 ›› Issue (6) : 470 -478.

PDF
Transactions of Tianjin University ›› 2020, Vol. 26 ›› Issue (6) : 470 -478. DOI: 10.1007/s12209-020-00264-6
Research Article

Coupling of Cu Catalyst and Phosphonated Ru Complex Light Absorber with TiO2 as Bridge to Achieve Superior Visible Light CO2 Photoreduction

Author information +
History +
PDF

Abstract

Visible light photocatalytic CO2 conversion is a promising solution to global warming and energy shortage. Herein, we build a well-designed bridge-like nanostructure, that is, the phosphonated Ru complex (RuP) light absorber–TiO2 bridge–Cu catalyst. In this nanostructure, brookite TiO2 serving as a bridge is spatially connected to the RuP and Cu on each of its sides and could thus physically separate the photoexcited holes and electrons over the RuP and Cu, respectively. Given its effective charge separation, this RuP–TiO2–Cu assembly exhibits superior CO2 photoreduction activity relative to RuP–SiO2–Cu under visible light irradiation (λ > 420 nm). The catalytic activity is further optimized by adopting brookite TiO2 with various electronic band structures. Results reveal the rapid movement of electrons from the RuP through the conduction band of TiO2 and finally to the Cu surface. This property is crucial in CO2 photoreduction activity.

Keywords

Visible light photocatalysis / CO2 photoreduction / Spatial charge separation

Cite this article

Download citation ▾
Rongjie Xu, Hua Xu, Shangbo Ning, Qiqi Zhang, Zhongshan Yang, Jinhua Ye. Coupling of Cu Catalyst and Phosphonated Ru Complex Light Absorber with TiO2 as Bridge to Achieve Superior Visible Light CO2 Photoreduction. Transactions of Tianjin University, 2020, 26(6): 470-478 DOI:10.1007/s12209-020-00264-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang CL, Sun ZX, Zheng Y, et al. Recent progress in visible light photocatalytic conversion of carbon dioxide. J Mater Chem A, 2019, 7(3): 865-887.

[2]

Tong H, Ouyang S, Bi YP, et al. Nano-photocatalytic materials: possibilities and challenges. Adv Mater, 2012, 24(2): 229-251.

[3]

Chen Y, Wang DK, Deng XY, et al. Metal–organic frameworks (MOFs) for photocatalytic CO2 reduction. Catal Sci Technol, 2017, 7(21): 4893-4904.

[4]

Meng XG, Ouyang S, Kako T, et al. Photocatalytic CO2conversion over alkali modified TiO2without loading noble metal cocatalyst. Chem Commun, 2014, 50(78): 11517-11519.

[5]

Zhu M, Ge Q, Zhu X. Catalytic reduction of CO2 to CO via reverse water gas shift reaction: recent advances in the design of active and selective supported metal catalysts. Trans of Tianjin Univ, 2020, 26(3): 172-187.

[6]

Guo ZG, Cheng SW, Cometto C, et al. Highly efficient and selective photocatalytic CO2 reduction by iron and cobalt quaterpyridine complexes. J Am Chem Soc, 2016, 138(30): 9413-9416.

[7]

Zhao X, Zhou J, Sun CY, et al. A ruthenium/polyoxometalate for efficient CO2 photoreduction under visible light in diluted CO2. Nanotechnology, 2020, 31(25): 255402

[8]

Hong DC, Tsukakoshi Y, Kotani H, et al. Visible-light-driven photocatalytic CO2 reduction by a Ni(II) complex bearing a bioinspired tetradentate ligand for selective CO production. J Am Chem Soc, 2017, 139(19): 6538-6541.

[9]

Cheung PL, MacHan CW, Malkhasian AYS, et al. Photocatalytic reduction of carbon dioxide to CO and HCO2H using fac-Mn(CN)(bpy)(CO)3. Inorg Chem, 2016, 55(6): 3192-3198.

[10]

Teplý F. Photoredox catalysis by [Ru(bpy)3]2+ to trigger transformations of organic molecules. Organic synthesis using visible-light photocatalysis and its 20th century roots. Chem Commun, 2011, 76(7): 859-917.

[11]

Prier CK, Rankic DA, MacMillan DWC. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem Rev, 2013, 113(7): 5322-5363.

[12]

Ning SB, Xu H, Qi YH, et al. Microstructure induced thermodynamic and kinetic modulation to enhance CO2 photothermal reduction: a case of atomic-scale dispersed Co–N species anchored Co@C hybrid. ACS Catal, 2020, 10(8): 4726-4736.

[13]

Yuan L, Hung SF, Tang ZR, et al. Dynamic evolution of atomically dispersed Cu species for CO2 photoreduction to solar fuels. ACS Catal, 2019, 9(6): 4824-4833.

[14]

Wu YA, McNulty I, Liu C. Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol. Nat Energy, 2019, 4(11): 957-968.

[15]

Xie H, Wang JY, Ithisuphalap K, et al. Recent advances in Cu-based nanocomposite photocatalysts for CO2 conversion to solar fuels. J Energy Chem, 2017, 26(6): 1039-1049.

[16]

DeSario PA, Pitman CL, Delia DJ, et al. Low-temperature CO oxidation at persistent low-valent Cu nanoparticles on TiO2 aerogels. Appl Catal B Environ, 2019, 252: 205-213.

[17]

Sundin E, Abrahamsson M. Long-lived charge separation in dye–semiconductor assemblies: a pathway to multi-electron transfer reactions. Chem Commun, 2018, 54(42): 5289-5298.

[18]

Woolerton TW, Sheard S, Reisner E, et al. Efficient and clean photoreduction of CO2 to CO by enzyme-modified TiO2 nanoparticles using visible light. J Am Chem Soc, 2010, 132(7): 2132-2133.

[19]

Abdellah M, El-Zohry AM, Antila LJ, et al. Time-resolved IR spectroscopy reveals a mechanism with TiO2 as a reversible electron acceptor in a TiO2–Re catalyst system for CO2 photoreduction. J Am Chem Soc, 2017, 139(3): 1226-1232.

[20]

Windle CD, Pastor E, Reynal A, et al. Improving the photocatalytic reduction of CO2 to CO through immobilisation of a molecular Re catalyst on TiO2. Chem Eur J, 2015, 21(9): 3746-3754.

[21]

Lin HF, Li LP, Zhao ML, et al. Synthesis of high-quality brookite TiO2 single-crystalline nanosheets with specific facets exposed: tuning catalysts from inert to highly reactive. J Am Chem Soc, 2012, 134(20): 8328-8331.

[22]

Zhao M, Xu H, Chen H, et al. Photocatalytic reactivity of 121 and 211 facets of brookite TiO2 crystals. J Mater Chem A, 2015, 3(5): 2331-2337.

[23]

Li JG, Tang CC, Li D, et al. Monodispersed spherical particles of brookite-type TiO2: synthesis, characterization, and photocatalytic property. J Am Ceram Soc, 2004, 87(7): 1358-1361.

[24]

Tan X, Huang XS, Zou YL, et al. Synthesis and characterization of Co-doped brookite titania photocatalysts with high photocatalytic activity. Trans Tianjin Univ, 2018, 24(2): 111-122.

[25]

Ohno T, Higo T, Saito H, et al. Dependence of photocatalytic activity on aspect ratio of a brookite TiO2 nanorod and drastic improvement in visible light responsibility of a brookite TiO2 nanorod by site-selective modification of Fe3+ on exposed faces. J Mol Catal A Chem, 2015, 396: 261-267.

[26]

Trammell SA, Moss JA, Yang JC, et al. Sensitization of TiO2 by phosphonate-derivatized proline assemblies. Inorg Chem, 1999, 38(16): 3665-3669.

[27]

Tompsett GA, Bowmaker GA, Cooney RP, et al. The Raman spectrum of brookite, TiO2 (PbCa, Z = 8). J Raman Spectrosc, 1995, 26(1): 57-62.

[28]

Xu H, Reunchan P, Ouyang S, et al. Anatase TiO2 single crystals exposed with high-reactive 111 facets toward efficient H2 evolution. Chem Mater, 2013, 25(3): 405-411.

[29]

Liu CP, Yu T, Tan X. Characterization and photocatalytic activity of mixed nanocrystalline TiO2 powders prepared by xerogel-hydrothermal method in different acid solutions. Trans Tianjin Univ, 2016, 22(5): 473-479.

[30]

Dietrich J, Thorenz U, Förster C, et al. Effects of sequence, connectivity, and counter ions in new amide-linked Ru(tpy)2–Re(bpy) chromophores on redox chemistry and photophysics. Inorg Chem, 2013, 52(3): 1248-1264.

[31]

Tseng IH, Wu JCS, Chou HY. Effects of sol–gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction. J Catal, 2004, 221(2): 432-440.

[32]

Kim W, Frei H. Directed assembly of cuprous oxide nanocatalyst for CO2 reduction coupled to heterobinuclear ZrOCoII light absorber in mesoporous silica. ACS Catal, 2015, 5(9): 5627-5635.

[33]

Liu YY, Liu FL, Wang RS, et al. Characterizing the charge trapping across crystalline and amorphous Si/SiO2/HfO2 stacks from first-principle calculations. Phys Rev Appl, 2019, 12(6): 064012

[34]

Moreno-González M, Blasco T, Góra-Marek K, et al. Study of propane oxidation on Cu-zeolite catalysts by in situ EPR and IR spectroscopies. Catal Today, 2014, 227: 123-129.

[35]

Pu Y, Luo YD, Wei XQ, et al. Synergistic effects of Cu2O-decorated CeO2 on photocatalytic CO2 reduction: surface Lewis acid/base and oxygen defect. Appl Catal B Environ, 2019, 254: 580-586.

[36]

Li WH, Nie XW, Jiang X, et al. ZrO2 support imparts superior activity and stability of Co catalysts for CO2 methanation. Appl Catal B Environ, 2018, 220: 397-408.

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/