Nano-silica-decorated Poly(m-Phenylene Isophthalamide) Separator with Enhanced Mechanical and Electrolyte Wetting Properties for Lithium-Ion Batteries

Jianjie Wang , Biao Yuan , Fusheng Pan , Lina Qiao , Jun Guo , Cuijia Duan , Wei Wu , Zan Chen , Yanlei Su

Transactions of Tianjin University ›› 2020, Vol. 26 ›› Issue (4) : 256 -264.

PDF
Transactions of Tianjin University ›› 2020, Vol. 26 ›› Issue (4) : 256 -264. DOI: 10.1007/s12209-020-00256-6
Research Article

Nano-silica-decorated Poly(m-Phenylene Isophthalamide) Separator with Enhanced Mechanical and Electrolyte Wetting Properties for Lithium-Ion Batteries

Author information +
History +
PDF

Abstract

Heat-resistant poly(m-phenylene isophthalamide) (PMIA) has attracted considerable attention as a novel separator for application in lithium-ion batteries (LIBs); however, its mechanical strength and electrolyte wettability are not ideal. Herein, a nano-silica-decorated poly(m-phenylene isophthalamide) (PMIA@SiO2) separator was fabricated with SiO2 nanoparticles uniformly attached to the pores and pore walls of the PMIA separator. The as-prepared PMIA@SiO2 separator has good mechanical strength (a 16% improvement compared with pristine PMIA) and wettability toward the electrolyte (the contact angle decreases from 34.0° to 23.1°). The PMIA@SiO2 separator also had a high ionic conductivity (0.75 mS/cm) and low interfacial electric resistance (75 Ω). The assembled LiCoO2/PMIA@SiO2-liquid electrolyte/Li cell displays good cycle performance with a capacity retention of 88.1% after 50 cycles. Furthermore, the cycling performance and rate capacity rarely changed after high-temperature treatment. Therefore, the nano-silica-decorated PMIA separator is a potential candidate for application in LIBs with high safety.

Keywords

Li-ion batteries / PMIA@SiO2 Separator / Mechanical strength / Electrolyte wetting

Cite this article

Download citation ▾
Jianjie Wang, Biao Yuan, Fusheng Pan, Lina Qiao, Jun Guo, Cuijia Duan, Wei Wu, Zan Chen, Yanlei Su. Nano-silica-decorated Poly(m-Phenylene Isophthalamide) Separator with Enhanced Mechanical and Electrolyte Wetting Properties for Lithium-Ion Batteries. Transactions of Tianjin University, 2020, 26(4): 256-264 DOI:10.1007/s12209-020-00256-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jiang ZY, Xie HQ, Wang SQ, et al. Perovskite membranes with vertically aligned microchannels for all-solid-state lithium batteries. Adv Energy Mater, 2018, 8(27): 1801433.

[2]

Chen XZ, He WJ, Ding LX, et al. Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework. Energy Environ Sci, 2019, 12(3): 938-944.

[3]

Lagadec MF, Zahn R, Wood V. Characterization and performance evaluation of lithium-ion battery separators. Nat Energy, 2019, 4(1): 16-25.

[4]

Zhao HJ, Deng NP, Yan J, et al. Effect of OctaphenylPolyhedral oligomeric silsesquioxane on the electrospun poly-m-phenylene isophthalamid separators for lithium-ion batteries with high safety and excellent electrochemical performance. Chem Eng J, 2019, 356: 11-21.

[5]

Zhang H, Lin CE, Zhou MY, et al. High thermal resistance polyimide separators prepared via soluble precusor and non-solvent induced phase separation process for lithium ion batteries. Electrochim Acta, 2016, 187: 125-133.

[6]

Xiang HF, Chen JJ, Li Z, et al. An inorganic membrane as a separator for lithium-ion battery. J Power Sour, 2011, 196(20): 8651-8655.

[7]

Jiang ZY, Wang SQ, Chen XZ, et al. Lithium-metal batteries: tape-casting Li0.34 La0.56TiO3 ceramic electrolyte films permit high energy density of lithium–metal batteries. Adv Mater, 2020, 32(6): 2070045.

[8]

Zhang H, Zhang Y, Yao ZK, et al. Novel configuration of polyimide matrix-enhanced cross-linked gel separator for high performance lithium ion batteries. Electrochim Acta, 2016, 204: 176-182.

[9]

Subramania A, Kalyana Sundaram NT, Sathiya Priya AR, et al. Preparation of a novel composite micro-porous polymer electrolyte membrane for high performance Li-ion battery. J Membr Sci, 2007, 294(1–2): 8-15.

[10]

Wang LY, Deng NP, Ju JG, et al. A novel core-shell structured poly-m-phenyleneisophthalamide@polyvinylidene fluoride nanofiber membrane for lithium ion batteries with high-safety and stable electrochemical performance. Electrochim Acta, 2019, 300: 263-273.

[11]

Wang ZH, Xiang HF, Wang LJ, et al. A paper-supported inorganic composite separator for high-safety lithium-ion batteries. J Membr Sci, 2018, 553: 10-16.

[12]

Kang WM, Deng NP, Ma XM, et al. A thermostability gel polymer electrolyte with electrospun nanofiber separator of organic F-doped poly-m-phenylene isophthalamide for lithium-ion battery. Electrochim Acta, 2016, 216: 276-286.

[13]

Chen WW, Weng WG. Ultrafine lauric–myristic acid eutectic/poly (meta-phenylene isophthalamide) form-stable phase change fibers for thermal energy storage by electrospinning. Appl Energy, 2016, 173: 168-176.

[14]

Wang XR, Si Y, Wang XF, et al. Tuning hierarchically aligned structures for high-strength PMIA–MWCNT hybrid nanofibers. Nanoscale, 2013, 5(3): 886-889.

[15]

Wang T, He XP, Li Y, et al. Novel poly(piperazine-amide) (PA) nanofiltration membrane based poly(m-phenylene isophthalamide) (PMIA) hollow fiber substrate for treatment of dye solutions. Chem Eng J, 2018, 351: 1013-1026.

[16]

Zhang H, Zhang Y, Xu TG, et al. Poly(m-phenylene isophthalamide) separator for improving the heat resistance and power density of lithium-ion batteries. J Power Sour, 2016, 329: 8-16.

[17]

Lee JH, Manuel J, Liu Y, et al. High temperature resistant electrospun nanofibrous meta-aramid separators for lithium ion batteries. J Nanosci Nanotechnol, 2016, 16(10): 10724-10729.

[18]

Zhai YY, Wang N, Mao X, et al. Sandwich-structured PVdF/PMIA/PVdF nanofibrous separators with robust mechanical strength and thermal stability for lithium ion batteries. J Mater Chem A, 2014, 2(35): 14511-14518.

[19]

Xiao K, Zhai YY, Yu JY, et al. Nanonet-structured poly(m-phenylene isophthalamide)–polyurethane membranes with enhanced thermostability and wettability for high power lithium ion batteries. RSC Adv, 2015, 5(68): 55478-55485.

[20]

Yang CL, Li ZH, Li WJ, et al. Batwing-like polymer membrane consisting of PMMA-grafted electrospun PVdF–SiO2 nanocomposite fibers for lithium-ion batteries. J Membr Sci, 2015, 495: 341-350.

[21]

Cao CY, Tan L, Liu WW, et al. Polydopamine coated electrospun poly(vinyldiene fluoride) nanofibrous membrane as separator for lithium-ion batteries. J Power Sour, 2014, 248: 224-229.

[22]

Zhao HJ, Kang WM, Deng NP, et al. A fresh hierarchical-structure gel poly-m-phenyleneisophthalamide nanofiber separator assisted by electronegative nanoclay-filler towards high-performance and advanced-safety lithium-ion battery. Chem Eng J, 2020, 384: 123312.

[23]

Li Y, of Chemical Engineering School of Chemical Engineering and Technology Tianjin University Tianjin China SKL (2019) A sandwich-structure composite membrane as separator with high wettability and thermal properties for advanced lithium-ion batteries. Int J Electrochem Sci 7088–7103

[24]

Li YF, Ma XM, Deng NP, et al. Electrospun SiO2/PMIA nanofiber membranes with higher ionic conductivity for high temperature resistance lithium-ion batteries. Fibers Polym, 2017, 18(2): 212-220.

[25]

Jeon KS, Nirmala R, Navamathavan R, et al. The study of efficiency of Al2O3 drop coated electrospun meta-aramid nanofibers as separating membrane in lithium-ion secondary batteries. Mater Lett, 2014, 132: 384-388.

[26]

Zhao HJ, Deng NP, Kang WM, et al. The significant effect of octa(aminophenyl)silsesquioxane on the electrospun ion-selective and ultra-strong poly-m-phenyleneisophthalamide separator for enhanced electrochemical performance of lithium-sulfur battery. Chem Eng J, 2020, 381: 122715.

[27]

Yang CL, Liu HY, Xia QL, et al. Effects of SiO2 nanoparticles and diethyl carbonate on the electrochemical properties of a fibrous nanocomposite polymer electrolyte for rechargeable lithium batteries. Arab J Sci Eng, 2014, 39(9): 6711-6720.

[28]

Park JH, Cho JH, Park W, et al. Close-packed SiO2/poly(methyl methacrylate) binary nanoparticles-coated polyethylene separators for lithium-ion batteries. J Power Sour, 2010, 195(24): 8306-8310.

[29]

Wang Y, Wang SQ, Fang JQ, et al. A nano-silica modified polyimide nanofiber separator with enhanced thermal and wetting properties for high safety lithium-ion batteries. J Membr Sci, 2017, 537: 248-254.

[30]

Zenerino A, Amigoni S, Taffin de Givenchy E, et al. Homogeneous dispersion of SiO2 nanoparticles in an hydrosoluble polymeric network. React Funct Polym, 2013, 73(8): 1065-1071.

[31]

Qi DM, Gao F, Chen ZJ, et al. Preparation of composite films with controlled dispersion state of SiO2 nanoparticles by using polymer/SiO2 nanocomposite particles. Colloids Surf A Physicochem Eng Asp, 2017, 523: 106-117.

[32]

Gowri VS, Almeida L, Amorim T, et al. Novel copolymer for SiO2 nanoparticles dispersion. J Appl Polym Sci, 2012, 124(2): 1553-1561.

[33]

Zhang JJ, Liu ZH, Kong QS, et al. Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator. ACS Appl Mater Interfaces, 2013, 5(1): 128-134.

[34]

Montes-Morán MA, Paredes JI, Martínez-Alonso A, et al. Surface characterization of PPTA fibers using inverse gas chromatography. Macromolecules, 2002, 35(13): 5085-5096.

[35]

Cheng DK, Dai XH, Chen L, et al. Thiol–yne click synthesis of polyamide–amine dendritic magnetic halloysite nanotubes for the efficient removal of Pb(II). ACS Sustain Chem Eng, 2020, 8(2): 771-781.

[36]

Sa RN, Yan WL, et al. Improved adhesion properties of poly-p-phenyleneterephthamide fibers with a rubber matrix via UV-initiated grafting modification. RSC Adv, 2015, 5(114): 94351-94360.

[37]

Meng JK, Cao Y, Suo Y, et al. Facile fabrication of 3D SiO2@Graphene aerogel composites as anode material for lithium ion batteries. Electrochim Acta, 2015, 176: 1001-1009.

[38]

Li WL, Xing YJ, Wu YH, et al. Study the effect of ion-complex on the properties of composite gel polymer electrolyte based on Electrospun PVdF nanofibrous membrane. Electrochim Acta, 2015, 151: 289-296.

[39]

Villar-Rodil S, Paredes JI, Martínez-Alonso A, et al. Atomic force microscopy and infrared spectroscopy studies of the thermal degradation of nomex aramid fibers. Chem Mater, 2001, 13(11): 4297-4304.

[40]

Wang ZY, Guo FL, Chen C, et al. Self-assembly of PEI/SiO2 on polyethylene separators for Li-ion batteries with enhanced rate capability. ACS Appl Mater Interfaces, 2015, 7(5): 3314-3322.

[41]

Yanilmaz M, Lu Y, Dirican M, et al. Nanoparticle-on-nanofiber hybrid membrane separators for lithium-ion batteries via combining electrospraying and electrospinning techniques. J Membr Sci, 2014, 456: 57-65.

[42]

Zhang SS. A review on the separators of liquid electrolyte Li-ion batteries. J Power Sources, 2007, 164(1): 351-364.

[43]

Fu D, Luan B, Argue S, et al. Nano SiO2 particle formation and deposition on polypropylene separators for lithium-ion batteries. J Power Sour, 2012, 206: 325-333.

[44]

Yanilmaz M, Dirican M, Zhang XW. Evaluation of electrospun SiO2/nylon 6,6 nanofiber membranes as a thermally-stable separator for lithium-ion batteries. Electrochim Acta, 2014, 133: 501-508.

[45]

Fan XY, Liu B, Liu J, et al. Battery technologies for grid-level large-scale electrical energy storage. Trans Tianjin Univ, 2020, 26(2): 92-103.

[46]

Schweiger HG, Multerer M, Wietelmann U, et al. NMR determination of trace water in lithium salts for battery electrolytes. J Electrochem Soc, 2005, 152(3): A622.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/