Improvement in the Orthogonal Protein Degradation in Escherichia coli by Truncated mf-ssrA Tag

Lu Lv , Yang Wu , Guozhen Zhao , Hao Qi

Transactions of Tianjin University ›› 2019, Vol. 25 ›› Issue (4) : 357 -363.

PDF
Transactions of Tianjin University ›› 2019, Vol. 25 ›› Issue (4) : 357 -363. DOI: 10.1007/s12209-019-00193-z
Research Article

Improvement in the Orthogonal Protein Degradation in Escherichia coli by Truncated mf-ssrA Tag

Author information +
History +
PDF

Abstract

SsrA peptide tag from Mycoplasma florum has been developed as a versatile biotechnology tool to control orthogonal degradation of tagged proteins in Escherichia coli. Here, using the systematic deletion mutants of mf-ssrA tag, we demonstrated that the residues in two separate regions have different functions in mf-Lon-mediated specific orthogonal target protein degradation in E. coli. The deletion of multiple residues, up to six amino acids, did not fatally abolish its specific degradation activity, instead of being able to improve the stability of the tagged protein in the presence of endogenous proteases before mf-Lon expression in E. coli. Except for previously identified essential residues, the region adjacent to the C-terminal of the mf-ssrA tag was involved in mf-Lon and endogenous protease-mediated degradation. Moreover, the deletion of specific residues made the mf-ssrA tag more effective and compact. The mf-ssrA tag can be implemented in synthetic biology and bioengineering for development of synthetic circuits.

Keywords

mf-ssrA / Protein degradation / Escherichia coli / L region / R region

Cite this article

Download citation ▾
Lu Lv, Yang Wu, Guozhen Zhao, Hao Qi. Improvement in the Orthogonal Protein Degradation in Escherichia coli by Truncated mf-ssrA Tag. Transactions of Tianjin University, 2019, 25(4): 357-363 DOI:10.1007/s12209-019-00193-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ambro L, Pevala V, Bauer J, et al. The influence of ATP-dependent proteases on a variety of nucleoid-associated processes. J Struct Biol, 2012, 179(2): 181-192.

[2]

Botos I, Melnikov EE, Cherry S, et al. Crystal structure of the AAA + alpha domain of E. coli Lon protease at 1.9 A resolution. J Struct Biol, 2004, 146(1–2): 113-122.

[3]

Farrell CM, Grossman AD, Sauer RT. Cytoplasmic degradation of ssrA-tagged proteins. Mol Microbiol, 2005, 57(6): 1750-1761.

[4]

Hari SB, Sauer RT. The AAA + FtsH protease degrades an ssrA-tagged model protein in the inner membrane of Escherichia coli. Biochemistry, 2016, 55(40): 5649-5652.

[5]

Moore SD, Sauer RT. The tmRNA system for translational surveillance and ribosome rescue. Annu Rev Biochem, 2007, 76: 101-124.

[6]

Lies M, Maurizi MR. Turnover of endogenous ssrA-tagged proteins mediated by ATP-dependent proteases in Escherichia coli. J Biol Chem, 2008, 283(34): 22918-22929.

[7]

Gur E, Sauer RT. Evolution of the ssrA degradation tag in Mycoplasma: specificity switch to a different protease. Proc Natl Acad Sci USA, 2008, 105(42): 16113-16118.

[8]

Baneyx F, Mujacic M. Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol, 2004, 22(11): 1399-1408.

[9]

Gottesman S, Roche E, Zhou Y, et al. The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the ssrA-tagging system. Genes Dev, 1998, 12(9): 1338-1347.

[10]

Bittner LM, Arends J, Narberhaus F. Mini review: ATP-dependent proteases in bacteria. Biopolymers, 2016, 105(8): 505-517.

[11]

Dougan DA, Weber-Ban E, Bukau B. Targeted delivery of an ssrA-tagged substrate by the adaptor protein sspB to its cognate AAA + Protein ClpX. Mol Cell, 2003, 12(2): 373-380.

[12]

Karzai AW, Susskind MM, Sauer RT. SmpB, a unique RNA-binding protein essential for the peptide-tagging activity of ssrA (tmRNA). EMBO J, 2014, 18(13): 3793-3799.

[13]

Chien P, Grant RA, Sauer RT, et al. Structure and substrate specificity of an sspB ortholog: design implications for AAA + adaptors. Structure, 2007, 15(10): 1296-1305.

[14]

Cameron DE, Collins JJ. Tunable protein degradation in bacteria. Nat Biotechnol, 2014, 32(12): 1276-1281.

[15]

Chan CTY, Lee JW, Cameron DE, et al. ‘Deadman’ and ‘Passcode’ microbial kill switches for bacterial containment. Nat Chem Biol, 2016, 12(2): 82-86.

[16]

Maier JAH, Möhrle R, Jeltsch A. Design of synthetic epigenetic circuits featuring memory effects and reversible switching based on DNA methylation. Nat Commun, 2017, 8: 15336

[17]

Zhang C, Tsoi R, You L. Addressing biological uncertainties in engineering gene circuits. Integr Biol, 2016, 8(4): 456-464.

[18]

Wang HH, Church GM. Multiplexed genome engineering and genotyping methods applications for synthetic biology and metabolic engineering. Methods Enzymol, 2011, 498: 409-426.

[19]

Flynn JM, Levchenko I, Seidel M, et al. Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis. Proc Natl Acad Sci USA, 2001, 98(19): 10584-10589.

[20]

Chien P, Perchuk BS, Laub MT, et al. Direct and adaptor-mediated substrate recognition by an essential AAA + protease. Proc Natl Acad Sci USA, 2007, 104(16): 6590-6595.

[21]

Novoa PG, Williams KP. The tmRNA website: reductive evolution of tmRNA in plastids and other endosymbionts. Nucleic Acids Res, 2004, 32(32): 104-108.

[22]

Lessner FH, Venters BJ, Keiler KC. Proteolytic adaptor for transfer-messenger RNA-tagged proteins from α-proteobacteria. J Bacteriol, 2007, 189(1): 272-275.

[23]

Wiegert T, Schumann W. SsrA-mediated tagging in Bacillus subtilis. J Bacteriol, 2001, 183(13): 3885-3889.

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/