High-Efficiency Preparation of 2,5-Diformylfuran with a Keto-ABNO Catalyst Under Mild Conditions

Le Li , Yuefei Wang , Wei Qi , Rongxin Su , Zhimin He

Transactions of Tianjin University ›› 2019, Vol. 25 ›› Issue (2) : 118 -123.

PDF
Transactions of Tianjin University ›› 2019, Vol. 25 ›› Issue (2) : 118 -123. DOI: 10.1007/s12209-018-0165-3
Research Article

High-Efficiency Preparation of 2,5-Diformylfuran with a Keto-ABNO Catalyst Under Mild Conditions

Author information +
History +
PDF

Abstract

In this paper, we report a new catalytic system for realizing the rapid and efficient oxidation of 5-hydroxymethylfurfural (HMF). First, we used 9-azabicyclo [3.3.1]nonan-3-one-N-oxyl (keto-ABNO) as a catalyst for the aerobic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-diformylfuran (DFF) in acetic acid. Then, we systematically studied the important reaction parameters, including the solvent, co-catalyst, and temperature. The results demonstrate that the acidic solvent used is crucial for the efficient oxidation of HMF to DFF. Under optimal conditions, we achieved a 93.4% yield of DFF within half an hour at room temperature. We also proposed the possible mechanism for this system.

Keywords

Biomass / 5-Hydroxymethylfurfural / 2,5-Diformylfuran / 9-Azabicyclo[3.3.1]nonan-3-one-N-oxyl / Homogeneous catalysis

Cite this article

Download citation ▾
Le Li, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. High-Efficiency Preparation of 2,5-Diformylfuran with a Keto-ABNO Catalyst Under Mild Conditions. Transactions of Tianjin University, 2019, 25(2): 118-123 DOI:10.1007/s12209-018-0165-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chheda JN, Huber GW, Dumesic JA. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew Chem Int Edit, 2007, 46(38): 7164-7183.

[2]

Antonyraj CA, Jeong J, Kim B, et al. Selective oxidation of HMF to DFF using Ru/γ-alumina catalyst in moderate boiling solvents toward industrial production. J Ind Eng Chem, 2013, 19(3): 1056-1059.

[3]

Ventura M, Aresta M, Dibenedetto A. Selective aerobic oxidation of 5- (hydroxymethyl)furfural to 5-formyl-2-furancarboxylic acid in water. ChemSusChem, 2016, 9(10): 1096-1100.

[4]

Casanova O, Iborra S, Corma A. Biomass into chemicals: aerobic oxidation of 5-hydroxymethyl-2-furfural into 2,5-furandicarboxylic acid with gold nanoparticle catalysts. ChemSusChem, 2009, 2(12): 1138-1144.

[5]

Deng J, Song HJ, Cui MS, et al. Aerobic oxidation of hydroxymethylfurfural and furfural by using heterogeneous Co xO y–N@C catalysts. ChemSusChem, 2014, 7(12): 3334-3340.

[6]

Sun Y, Ma H, Jia X, et al. A high-performance base-metal approach for the oxidative esterification of 5-hydroxymethylfurfural. ChemCatChem, 2016, 8(18): 2907-2911.

[7]

Thananatthanachon T, Rauchfuss TB. Efficient production of the liquid fuel 2,5-dimethylfuran from fructose using formic acid as a reagent. Angew Chem Int Edit, 2010, 49(37): 6616-6618.

[8]

Zu Y, Yang P, Wang J, et al. Efficient production of the liquid fuel 2,5-dimethylfuran from 5-hydroxymethylfurfural over Ru/Co3O4 catalyst. Appl Catal B-Environ, 2014, 146(3): 244-248.

[9]

Poeta MD, Schell WA, Dykstra CC, et al. Structure-In vitro activity relationships of pentamidine analogues and dication-substituted bis-benzimidazoles as new antifungal agents. Antimicrob Agents Chemother, 1998, 42(10): 2495-2502.

[10]

Hopkins KT, Wilson WD, Bender BC, et al. Extended aromatic furan amidino derivatives as anti-pneumocystis carinii agents. J Med Chem, 1999, 30(11): 3872-3878.

[11]

Moreau C, Belgacem MN, Gandini A. Recent catalytic advances in the chemistry of substituted furans from carbohydrates and in the ensuing polymers. Top Catal, 2004, 35(31): 11-30.

[12]

Richter DT, Lash TD. Oxidation with dilute aqueous ferric chloride solutions greatly improves yields in the ‘4 + 1’ synthesis of sapphyrins. Tetrahedron Lett, 1999, 40(37): 6735-6738.

[13]

Amarasekara AS, Green D, Williams LTD. Renewable resources based polymers: synthesis and characterization of 2,5-diformylfuran-urea resin. Eur Polym J, 2009, 45(2): 595-598.

[14]

Ma J, Du Z, Xu J, et al. Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran, and synthesis of a fluorescent material. ChemSusChem, 2011, 4(1): 51-54.

[15]

Xu F, Zhang Z. Polyaniline-grafted VO(acac)2: an effective catalyst for the synthesis of 2,5-diformylfuran from 5-hydroxymethylfurfural and fructose. ChemCatChem, 2015, 7(9): 1470-1477.

[16]

Yang Z, Qi W, Su R, et al. 3D flower-like micro/nano Ce–Mo composite oxides as effective bifunctional catalysts for one-pot conversion of fructose to 2,5-diformylfuran. ACS Sustain Chem Eng, 2017, 5(5): 4179-4187.

[17]

Le NT, Lakshmanan P, Cho K, et al. Selective oxidation of 5-hydroxymethyl-2-furfural into 2,5-diformylfuran over VO2+ and Cu2+ ions immobilized on sulfonated carbon catalysts. Appl Catal A-Gen, 2013, 464–465(16): 305-312.

[18]

Liao L, Liu Y, Li Z, et al. Catalytic aerobic oxidation of 5-hydroxymethylfurfural into 2,5-diformylfuran over VO2+ and Cu2+ immobilized on amino-functionalized core-shell magnetic Fe3O4@SiO2. RSC Adv, 2016, 6(97): 94976-94988.

[19]

Fang R, Luque R, Li Y. Selective aerobic oxidation of biomass-derived HMF to 2,5-diformylfuran using a MOF-derived magnetic hollow Fe–Co nanocatalyst. Green Chem, 2016, 18(10): 3152-3157.

[20]

Wang Y, Liu B, Huang K, et al. Aerobic oxidation of biomass-derived 5-(hydroxymethyl)furfural into 2,5-diformylfuran catalyzed by the trimetallic mixed oxide (Co–Ce–Ru). Ind Eng Chem Res, 2016, 53(4): 1313-1319.

[21]

Liu B, Zhang Z, Lv K, et al. Efficient aerobic oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-diformylfuran catalyzed by magnetic nanoparticle supported manganese oxide. Appl Catal A-Gen, 2014, 472(3): 64-71.

[22]

Nie J, Xie J, Liu H. Activated carbon-supported ruthenium as an efficient catalyst for selective aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. Chin J Catal, 2013, 34(5): 871-875.

[23]

Wang F, Jiang L, Wang J, et al. Catalytic conversion of fructose and 5-hydroxymethylfurfural into 2,5-diformylfuran over SBA-15 supported ruthenium catalyst. Energy Fuel, 2016, 30(7): 5885-5892.

[24]

Fang C, Dai JJ, Xu HJ, et al. Iron-catalyzed selective oxidation of 5-hydroxylmethylfurfural in air: a facile synthesis of 2,5-diformylfuran at room temperature. Chin Chem Lett, 2015, 26(10): 1265-1268.

[25]

Mittal N, Nisola GM, Malihan LB, et al. Metal-free mild oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. Korean J Chem Eng, 2014, 31(8): 1362-1367.

[26]

Lauber MB, Stahl SS. Efficient aerobic oxidation of secondary alcohols at ambient temperature with an ABNO/NO x catalyst system. ACS Catal, 2013, 3(11): 2612-2616.

[27]

Sever RR, Root TW. DFT study of solvent coordination effects on titanium-based epoxidation catalysts. Part two: reactivity of titanium hydroperoxo complexes in ethylene epoxidation. J Phys Chem B, 2003, 107(17): 4090-4099.

[28]

Ma S, Liu J, Li S, et al. Development of a general and practical iron nitrate/TEMPO-catalyzed aerobic oxidation of alcohols to aldehydes/ketones: catalysis with table salt. Adv Synth Catal, 2011, 353(6): 1005-1017.

[29]

Dijksman A, Arends IW, Sheldon RA. Cu(II)-nitroxyl radicals as catalytic galactose oxidase mimics. Org Biomol Chem, 2003, 1(18): 3232-3237.

[30]

Liu R, Liang X, Dong C, et al. Transition-metal-free: a highly efficient catalytic aerobic alcohol oxidation process. J Am Chem Soc, 2004, 35(32): 4112-4113.

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/