The Combinatorial Biosynthesis of “Unnatural” Products with Polyketides

Chuanbo Zhang , Di Ke , Yuejiao Duan , Wenyu Lu

Transactions of Tianjin University ›› 2018, Vol. 24 ›› Issue (6) : 501 -512.

PDF
Transactions of Tianjin University ›› 2018, Vol. 24 ›› Issue (6) : 501 -512. DOI: 10.1007/s12209-018-0151-9
Review

The Combinatorial Biosynthesis of “Unnatural” Products with Polyketides

Author information +
History +
PDF

Abstract

Polyketides have been widely used clinically due to their significant biological activities, but the needed structural and functional diversity cannot be achieved by common chemical synthetic methods. The tool of combinatorial biosynthesis provides the possibility to produce “unnatural” natural drugs, which has achieved initial success. This paper provides an overview for the strategies of combinatorial biosynthesis in producing the structural and functional diversity of polyketides, including the redesign of metabolic flow, polyketide synthase (PKS) engineering, and PKS post-translational modification. Although encouraging progress has been made in the last decade, challenges still exist regarding the rational combinatorial biosynthesis of polyketides. In this review, the perspectives of polyketide combinatorial biosynthesis are also discussed.

Keywords

Polyketides / Combinatorial biosynthesis / “Unnatural” natural products / Biosynthesis

Cite this article

Download citation ▾
Chuanbo Zhang, Di Ke, Yuejiao Duan, Wenyu Lu. The Combinatorial Biosynthesis of “Unnatural” Products with Polyketides. Transactions of Tianjin University, 2018, 24(6): 501-512 DOI:10.1007/s12209-018-0151-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jenke-Kodama H, Dittmann E. Evolution of metabolic diversity: insights from microbial polyketide synthases. Phytochemistry, 2009, 70(15/16): 1858-1866.

[2]

Staunton J, Weissman KJ. Polyketide biosynthesis: a millennium review. Nat Prod Rep, 2001, 18(4): 380-416.

[3]

Khosla C, Tang Y, Chen AY, et al. Structure and mechanism of the 6-deoxyerythronolide B synthase. Annu Rev Biochem, 2007, 76(1): 195-221.

[4]

Liou GF, Khosla C. Building-block selectivity of polyketide synthases. Curr Opin Chem Biol, 2003, 7(2): 279-284.

[5]

Barajas JF, Shakya G, Moreno G, et al. Polyketide mimetics yield structural and mechanistic insights into product template domain function in nonreducing polyketide synthases. Proc Natl Acad Sci USA, 2017, 114(21): 4142-4148.

[6]

McDaniel R, Ebert-Khosla S, Fu H, et al. Engineered biosynthesis of novel polyketides: influence of a downstream enzyme on the catalytic specificity of a minimal aromatic polyketide synthase. Proc Natl Acad Sci USA, 1994, 91(24): 11542-11546.

[7]

Meurer G, Gerlitz M, Wendt-Pienkowski E, et al. Iterative type II polyketide synthases, cyclases and ketoreductases exhibit context-dependent behavior in the biosynthesis of linear and angular decapolyketides. Chem Biol, 1997, 4(6): 433-443.

[8]

Funa N, Ohnishi Y, Fujii I, et al. A new pathway for polyketide synthesis in microorganisms. Nature, 1999, 400(6747): 897-899.

[9]

McDaniel R, Thamchaipenet A, Gustafsson C, et al. Multiple genetic modifications of the erythromycin polyketide synthase to produce a library of novel “unnatural” natural products. Proc Natl Acad Sci USA, 1999, 96(5): 1846-1851.

[10]

Xue C, Zhang X, Yu Z, et al. Up-regulated spinosad pathway coupling with the increased concentration of acetyl-CoA and malonyl-CoA contributed to the increase of spinosad in the presence of exogenous fatty acid. Biochem Eng J, 2013, 81(4): 47-53.

[11]

Wang X, Zhang C, Wang M, et al. Genome-scale metabolic network reconstruction of Saccharopolyspora spinosa for spinosad production improvement. Microb Cell Fact, 2014, 13(1): 41

[12]

Zhang X, Xue C, Zhao F, et al. Suitable extracellular oxidoreduction potential inhibit rex regulation and effect central carbon and energy metabolism in Saccharopolyspora spinosa. Microb Cell Fact, 2014, 13(1): 98-108.

[13]

Zhao F, Xue C, Wang M, et al. A comparative metabolomics analysis of Saccharopolyspora spinosa WT, WH124, and LU104 revealed metabolic mechanisms correlated with increases in spinosad yield. Biosci Biotechnol Biochem, 2013, 77(8): 1661-1668.

[14]

Bachmann BO, Van Lanen SG, Baltz RH. Microbial genome mining for accelerated natural products discovery: is a renaissance in the making?. J Ind Microbiol Biotechnol, 2014, 41(2): 175-184.

[15]

Bertrand S, Bohni N, Schnee S, et al. Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery. Biotechnol Adv, 2014, 32(6): 1180-1204.

[16]

Xue C, Duan Y, Zhao F, et al. Stepwise increase of spinosad production in Saccharopolyspora spinosa by metabolic engineering. Biochem Eng J, 2013, 72(2): 90-95.

[17]

Gómez C, Olano C, Palomino-Schätzlein M, et al. Novel compounds produced by Streptomyces lydicus NRRL 2433 engineered mutants altered in the biosynthesis of streptolydigin. J Antibiot, 2012, 65(7): 341-348.

[18]

Wu G, Zhou H, Zhang P, et al. Polyketide production of pestaloficiols and macrodiolide ficiolides revealed by manipulations of epigenetic regulators in an endophytic fungus. Org Lett, 2016, 18(8): 1832-1835.

[19]

Lechner A, Wilson MC, Ban YH, et al. Designed biosynthesis of 36-methyl-FK506 by polyketide precursor pathway engineering. ACS Synth Biol, 2013, 2(7): 379-383.

[20]

Katsuyama Y, Hirose Y, Funa N, et al. Precursor-directed biosynthesis of curcumin analogs in Escherichia coli. Biosci Biotechnol Biochem, 2010, 74(3): 641-645.

[21]

Li S, Li Y, Lu C, et al. Activating a cryptic ansamycin biosynthetic gene cluster to produce three new naphthalenic octaketide ansamycins with n-pentyl and n-butyl side chains. Org Lett, 2015, 17(15): 3706-3709.

[22]

Kersten RD, Lane AL, Nett M, et al. Bioactivity-guided genome mining reveals the lomaiviticin biosynthetic gene cluster in salinispora tropica. ChemBioChem, 2013, 14(8): 955-962.

[23]

Chan YA, Podevels AM, Kevany BM, et al. Biosynthesis of polyketide synthase extender units. Nat Prod Rep, 2009, 26(1): 90-114.

[24]

Rowe CJ, Böhm IU, Thomas IP, et al. Engineering a polyketide with a longer chain by insertion of an extra module into the erythromycin-producing polyketide synthase. Chem Biol, 2001, 8(5): 475-485.

[25]

Garcia I, Vior NM, González-Sabín J, et al. Engineering the biosynthesis of the polyketide-nonribosomal peptide collismycin a for generation of analogs with neuroprotective activity. Chem Biol, 2013, 20(8): 1022-1032.

[26]

Koryakina I, McArthur JB, Draelos MM, et al. Promiscuity of a modular polyketide synthase towards natural and non-natural extender units. Org Biomol Chem, 2013, 11(27): 4449-4458.

[27]

Dunn BJ, Khosla C. Engineering the acyltransferase substrate specificity of assembly line polyketide synthases. J R Soc Interface, 2013, 10(85): 20130297

[28]

Park SR, Han AR, Ban YH, et al. Genetic engineering of macrolide biosynthesis: past advances, current state, and future prospects. Appl Microbiol Biotechnol, 2010, 85(5): 1227-1239.

[29]

Nigam A, Almabruk KH, Saxena A, et al. Modification of rifamycin polyketide backbone leads to improved drug activity against rifampicin-resistant mycobacterium tuberculosis. J Biol Chem, 2014, 289(30): 21142-21152.

[30]

Koryakina I, Kasey C, Mcarthur JB, et al. Inversion of extender unit selectivity in the erythromycin polyketide synthase by acyltransferase domain engineering. ACS Chem Biol, 2017, 12(1): 114-123.

[31]

Carvalho R, Reid R, Viswanathan N, et al. The biosynthetic genes for disorazoles, potent cytotoxic compounds that disrupt microtubule formation. Gene, 2005, 359(45): 91-98.

[32]

Lopanik NB, Shields JA, Buchholz TJ, et al. In vivo and in vitro trans-acylation by BryP, the putative bryostatin pathway acyltransferase derived from an uncultured marine symbiont. Chem Biol, 2008, 15(11): 1175-1186.

[33]

Walker MC, Thuronyi BW, Charkoudian LK, et al. Expanding the fluorine chemistry of living systems using engineered polyketide synthase pathways. Science, 2013, 341(6150): 1089-1094.

[34]

Koryakina I, McArthur J, Randall S, et al. Poly specific trans-acyltransferase machinery revealed via engineered acyl-CoA synthetases. ACS Chem Biol, 2013, 8(1): 200-208.

[35]

Dunn BJ, Watts KR, Robbins T, et al. Comparative analysis of the substrate specificity of trans-versus cis-acyltransferases of assembly line polyketide synthases. Biochemistry, 2014, 53(23): 3796-3806.

[36]

Caffrey P. Conserved amino acid residues correlating with ketoreductase stereospecificity in modular polyketide synthases. ChemBioChem, 2003, 4(7): 654-657.

[37]

Power P, Dunne T, Murphy B, et al. Engineered synthesis of 7-oxo-and 15-deoxy-15-oxo-amphotericins: insights into structure-activity relationships in polyene antibiotics. Chem Biol, 2008, 15(1): 78-86.

[38]

Siskos AP, Baerga-Ortiz A, Bali S, et al. Molecular basis of Celmer’s rules: stereochemistry of catalysis by isolated ketoreductase domains from modular polyketide synthases. Chem Biol, 2005, 12(10): 1145-1153.

[39]

Bonnett SA, Whicher JR, Papireddy K, et al. Structural and stereochemical analysis of a modular polyketide synthase ketoreductase domain required for the generation of a cis-alkene. Chem Biol, 2013, 20(6): 772-783.

[40]

Paananen P, Patrikainen P, Kallio P, et al. Structural and functional analysis of angucycline C-6 ketoreductase LanV involved in landomycin biosynthesis. Biochemistry, 2013, 52(31): 5304-5314.

[41]

Kwan DH, Sun Y, Schulz F, et al. Prediction and manipulation of the stereochemistry of enoylreduction in modular polyketide synthases. Chem Biol, 2008, 15(11): 1231-1240.

[42]

Kwan DH, Leadlay PF. Mutagenesis of a modular polyketide synthase enoylreductase domain reveals insights into catalysis and stereospecificity. ACS Chem Biol, 2010, 5(9): 829-838.

[43]

Ames BD, Nguyen C, Bruegger J, et al. Crystal structure and biochemical studies of the trans-acting polyketide enoyl reductase LovC from lovastatin biosynthesis. Proc Natl Acad Sci USA, 2012, 109(28): 11144-11149.

[44]

Menzella HG, Reid R, Carney JR, et al. Combinatorial polyketide biosynthesis by de novo design and rearrangement of modular polyketide synthase genes. Nat Biotechnol, 2005, 23(9): 1171-1176.

[45]

Menzella HG, Carney JR, Santi DV. Rational design and assembly of synthetic trimodular polyketide synthases. Chem Biol, 2007, 14(2): 143-151.

[46]

Liu T, Chiang Y, Somoza AD, et al. Engineering of an “unnatural” natural product by swapping polyketide synthase domains in Aspergillus nidulans. J Am Chem Soc, 2011, 133(34): 13314-13316.

[47]

Tripathi A, Choi SS, Sherman DH, et al. Thioesterase domain swapping of a linear polyketide tautomycetin with a macrocyclic polyketide pikromycin in Streptomyces sp. CK4412. J Ind Microbiol Biotechnol, 2016, 43(8): 1189-1193.

[48]

Xu Y, Zhou T, Zhang S, et al. Diversity-oriented combinatorial biosynthesis of benzenediol lactone scaffolds by subunit shuffling of fungal polyketide synthases. Proc Natl Acad Sci U. S.A, 2014, 111(34): 12354-12359.

[49]

Pérez M, Baig I, Braña AF, et al. Generation of new derivatives of the antitumor antibiotic mithramycin by altering the glycosylation pattern through combinatorial biosynthesis. ChemBioChem, 2008, 9(14): 2295-2304.

[50]

Smith DR, Grüschow S, Goss RJ. Scope and potential of halogenases in biosynthetic applications. Curr Opin Chem Biol, 2013, 17(2): 276-283.

[51]

Perić-Concha N, Borovička B, Long PF, et al. Ablation of the otcC gene encoding a post-polyketide hydroxylase from the oxytetracyline biosynthetic pathway in Streptomyces rimosus results in novel polyketides with altered chain length. J Biol Chem, 2005, 280(45): 37455-37460.

[52]

Olano C, Méndez C, Salas JA. Post-PKS tailoring steps in natural product-producing actinomycetes from the perspective of combinatorial biosynthesis. Nat Prod Rep, 2010, 27(4): 571-616.

[53]

Shinde PB, Han AR, Cho J, et al. Combinatorial biosynthesis and antibacterial evaluation of glycosylated derivatives of 12-membered macrolide antibiotic YC-17. J Biotechnol, 2013, 168(2): 142-148.

[54]

Kim E, Song MC, Kim MS, et al. One-pot combinatorial biosynthesis of glycosylated anthracyclines by co-cultivation of Streptomyces strains producing aglycones and nucleotide deoxysugars. ACS Comb Sci, 2017, 19(4): 262-270.

[55]

Pokhrel AR, Dhakal D, Jha AK, et al. Herboxidiene biosynthesis, production, and structural modifications: prospect for hybrids with related polyketide. Appl Microbiol Biotechnol, 2015, 99(20): 8351-8362.

[56]

Gaisser S, Carletti I, Schell U, et al. Glycosylation engineering of spinosyn analogues containing an L-olivose moiety. Org Biomol Chem, 2009, 7(8): 1705-1708.

[57]

Han AR, Shinde PB, Park JW, et al. Engineered biosynthesis of glycosylated derivatives of narbomycin and evaluation of their antibacterial activities. Appl Microbiol Biotechnol, 2012, 93(3): 1147-1156.

[58]

Song MC, Kim E, Ban YH, et al. Achievements and impacts of glycosylation reactions involved in natural product biosynthesis in prokaryotes. Appl Microbiol Biotechnol, 2013, 97(13): 5691-5704.

[59]

Han S, Pham TV, Kim JH, et al. Functional characterization of CYP107W1 from Streptomyces avermitilis and biosynthesis of macrolide oligomycin A. Arch Biochem Biophys, 2015, 575(2): 1-7.

[60]

Montemiglio LC, Parisi G, Scaglione A, et al. Functional analysis and crystallographic structure of clotrimazole bound OleP, a cytochrome P450 epoxidase from Streptomyces antibioticus involved in oleandomycin biosynthesis. Biochim Biophys Acta Gen Subj, 2016, 1860(3): 465-475.

[61]

Kudo F, Motegi A, Mizoue K, et al. Cloning and characterization of the biosynthetic gene cluster of 16-membered macrolide antibiotic FD-891: involvement of a dual functional cytochrome P450 monooxygenase catalyzing epoxidation and hydroxylation. ChemBioChem, 2010, 11(11): 1574-1582.

[62]

Itagaki T, Kawamata A, Takeuchi M, et al. Synthesis and structure-activity relationship study of FD-891: importance of the side chain and C8–C9 epoxide for cytotoxic activity against cancer cells. J Antibiot, 2016, 69: 287-293.

[63]

Chen D, Zhang L, Pang B, et al. FK506 maturation involves a cytochrome p450 protein-catalyzed four-electron C-9 oxidation in parallel with a C-31 O-methylation. J Bacteriol, 2013, 195(9): 1931-1939.

[64]

Salcedo RG, Olano C, Gómez C, et al. Characterization and engineering of the biosynthesis gene cluster for antitumor macrolides PM100117 and PM100118 from a marine actinobacteria: generation of a novel improved derivative. Microb Cell Fact, 2016, 15(1): 1-19.

[65]

Wong FT, Khosla C. Combinatorial biosynthesis of polyketides: a perspective. Curr Opin Chem Biol, 2012, 16(1): 117-123.

[66]

Cimermancic P, Medema MH, Claesen J, et al. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell, 2014, 158(2): 412-421.

[67]

Wang X, Wang H, Liu T, et al. A PKS I gene-based screening approach for the discovery of a new polyketide from Penicillium citrinum Salicorn 46. Appl Microbiol Biotechnol, 2014, 98(11): 4875-4885.

[68]

Garg A, Xie X, Keatinge-Clay A, et al. Elucidation of the cryptic epimerase activity of redox-inactive ketoreductase domains from modular polyketide synthases by tandem equilibrium isotope exchange. J Am Chem Soc, 2014, 136(29): 10190-10193.

[69]

Dutta S, Whicher JR, Hansen DA, et al. Structure of a modular polyketide synthase. Nature, 2014, 510(7506): 512-517.

[70]

Davison J, Dorival J, Rabeharindranto H, et al. Insights into the function of trans-acyl transferase polyketide synthases from the SAXS structure of a complete module. Chem Sci, 2014, 5(8): 3081-3095.

[71]

Dorival J, Annaval T, Risser F, et al. Characterization of intersubunit communication in the virginiamycin trans-acyl tran sferase polyketide synthase. J Am Chem Soc, 2016, 138(12): 4155-4167.

[72]

Whicher JR, Dutta S, Hansen DA, et al. Structural rearrangements of a polyketide synthase module during its catalytic cycle. Nature, 2014, 510(7506): 560-564.

[73]

Lowry B, Robbins T, Weng CH, et al. In vitro reconstitution and analysis of the 6-deoxyerythronolide B synthase. J Am Chem Soc, 2013, 135(45): 16809-16812.

[74]

Sundaram S, Heine D, Hertweck C. Polyketide synthase chimeras reveal key role of ketosynthase domain in chain branching. Nat Chem Biol, 2015, 11(12): 949-951.

AI Summary AI Mindmap
PDF

144

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/