Quasi-Spherical Brookite TiO2 Nanostructures Synthesized Using Solvothermal Method in the Presence of Oxalic Acid

Yifei Wang , Yunling Zou , Qianqian Shang , Xin Tan , Tao Yu , Xianshou Huang , Wenxin Shi , Yao Xie , Gao Yan , Xiaoyi Wang

Transactions of Tianjin University ›› 2018, Vol. 24 ›› Issue (4) : 326 -339.

PDF
Transactions of Tianjin University ›› 2018, Vol. 24 ›› Issue (4) : 326 -339. DOI: 10.1007/s12209-017-0107-5
Research Article

Quasi-Spherical Brookite TiO2 Nanostructures Synthesized Using Solvothermal Method in the Presence of Oxalic Acid

Author information +
History +
PDF

Abstract

Brookite TiO2, the latest TiO2 photocatalyst, promises to be an interesting candidate for photocatalytic applications because of its unique physical and chemical properties. In this study, pure-phase brookite TiO2 with a quasi-spherical nanostructure was successfully synthesized via a solvothermal method using tetrabutyl titanate (Ti(OC4H9)4, TBOT) as the Ti source in the presence of oxalic acid. NaOH was used to regulate the pH of solution. The structure and morphology of the samples were then analyzed using multiple methods, such as X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) measurements and ultraviolet–visible diffuse spectroscopy (UV–Vis). Photocatalytic activities of the as-synthesized brookite TiO2 were evaluated by degrading aqueous methylene blue solution under UV light irradiation. The effect of thermal treatment temperature on photocatalytic activity of the samples was also investigated. The produced brookite TiO2 nanopowders calcined at 500 °C for 2 h showed the highest photocatalytic activity, and the corresponding degradation rate of methylene blue (10 mg/L) reached 96.7% after 90 min of illumination. In addition, the formation mechanism of pure-phase brookite TiO2 was investigated. It was found that the formation of pure-phase brookite TiO2 in this study was ascribed to the combined action of oxalic acid and sodium hydroxide.

Keywords

TiO2 / Brookite / Oxalic acid / Photocatalytic properties

Cite this article

Download citation ▾
Yifei Wang, Yunling Zou, Qianqian Shang, Xin Tan, Tao Yu, Xianshou Huang, Wenxin Shi, Yao Xie, Gao Yan, Xiaoyi Wang. Quasi-Spherical Brookite TiO2 Nanostructures Synthesized Using Solvothermal Method in the Presence of Oxalic Acid. Transactions of Tianjin University, 2018, 24(4): 326-339 DOI:10.1007/s12209-017-0107-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bokhimi X, Morales A, Aguilar M, et al. Local order in titania polymorphs. Int J Hydrog Energy, 2001, 26(12): 1279-1287.

[2]

Kumar SG, Rao KSRK. Polymorphic phase transition among the titania crystal structures using a solution-based approach: from precursor chemistry to nucleation process. Nanoscale, 2014, 6(20): 11574-11632.

[3]

Kumar SG, Devi LG. Review on modified TiO2 photocatalysis under UV/Visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J Phys Chem A, 2011, 115(46): 13211-13241.

[4]

Koelsch M, Cassaignon S, Guillemoles JF, et al. Comparison of optical and electrochemical properties of anatase and brookite TiO2 synthesized by the sol–gel method. Thin Solid Films, 2002, 403–404(2): 312-319.

[5]

Di Paola A, Bellardita M, Palmisano L. Brookite, the least known TiO2 photocatalyst. Catalysts, 2013, 3(1): 36-73.

[6]

Di Paola A, Addamo M, Bellardita M. Preparation of photocatalytic brookite thin films. Thin Solid Films, 2007, 515(7): 3527-3529.

[7]

Gong XQ, Selloni A. A first-principles study of the structures and energetics of stoichiometric brookite TiO2 surfaces. Phys Rev B, 2007, 76(23): 235307-235317.

[8]

Lin HF, Li LP, Zhao ML, et al. Synthesis of high-quality brookite TiO2 single-crystalline nanosheets with specific facets exposed: tuning catalysts from inert to highly reactive. J Am Chem Soc, 2012, 134(20): 8328-8331.

[9]

Kobayashi M, Petrykin V, Tomita K, et al. Hydrothermal synthesis of brookite-type titanium dioxide with snowflake-like nanostructures using a water-soluble citratoperoxotitanate complex. J Cryst Growth, 2011, 337(1): 30-37.

[10]

Morishima Y, Kobayashi M, Petrykin V, et al. Hydrothermal synthesis of brookite type TiO2 photocatalysts using a water-soluble Ti-complex coordinated by ethylenediaminetetraacetic acid. J Ceram Soc Jpn, 2009, 117(1363): 320-325.

[11]

Ohno Y, Tomita K, Komatsubara Y, et al. Pseudo-cube shaped brookite (TiO2) nanocrystals synthesized by an oleate-modified hydrothermal growth method. Cryst Growth Des, 2011, 11(11): 4831-4836.

[12]

Katsumata K, Ohno Y, Tomita K, et al. Synthesis of amphiphilic brookite nanoparticles with high photocatalytic performance for wide range of application. ACS Appl Mater Interfaces, 2012, 4(9): 4846-4852.

[13]

Hall SR, Swinerd VM, Newby FN, et al. Fabrication of porous titania (brookite) microparticles with complex morphology by sol–gel replication of pollen grains. Chem Mater, 2006, 18(3): 598-600.

[14]

You YF, Xu CH, Xu SS, et al. Structural characterization and optical property of TiO2 powders prepared by the sol–gel method. Ceram Int, 2014, 40(6): 8659-8666.

[15]

Dambournet D, Belharouak I, Ma JW, et al. Toward high surface area TiO2 brookite with morphology control. J Mater Chem, 2011, 21(9): 3085-3090.

[16]

Kominami H, Ishii Y, Kohno M, et al. Nanocrystalline brookite-type titanium(IV) oxide photocatalysts prepared by a solvothermal method: correlation between their physical properties and photocatalytic activities. Catal Lett, 2003, 91(1–2): 41-47.

[17]

Zhao YB, Pan F, Li H, et al. Uniform mesoporous anatase-brookite biphase TiO2 hollow spheres with high crystallinity via Ostwald ripening. J Phys Chem C, 2013, 117(42): 21718-21723.

[18]

Kobayashi M, Tomita K, Petrykin V, et al. Direct synthesis of brookite-type titanium oxide by hydrothermal method using water-soluble titanium complexes. J Mater Sci, 2008, 43(7): 2158-2162.

[19]

Truong QD, Le TH, Liu JY, et al. Synthesis of TiO2 nanoparticles using novel titanium oxalate complex towards visible light-driven photocatalytic reduction of CO2 to CH3OH. Appl Catal A Gen, 2012, 437–438(5): 28-35.

[20]

Kominami H, Kohno M, Kera Y. Synthesis of brookite-type titanium oxide nano-crystals in organic media. J Mater Chem, 2000, 10(5): 1151-1156.

[21]

Tomita K, Petrykin V, Kobayashi M, et al. A water-soluble titanium complex for the selective synthesis of nanocrystalline brookite, rutile, and anatase by a hydrothermal method. Angew Chem Int Ed, 2006, 45(15): 2378-2381.

[22]

Dambournet D, Belharouak I, Amine K. Tailored preparation methods of TiO2 anatase, rutile, brookite: mechanism of formation and electrochemical properties. Chem Mater, 2010, 22(3): 1173-1179.

[23]

Boudaren C, Bataille T, Auffrédic J, et al. Synthesis, structure determination from powder diffraction data and thermal behaviour of titanium (IV) oxalate [Ti2O3(H2O)2](C2O4)·H2O. Solid State Sci, 2003, 5: 175-182.

[24]

Shang QQ, Tan X, Yu T, et al. Efficient gaseous toluene photoconversion on grapheme–titanium dioxide nanocomposites with dominate exposed 001 facets. J Colloid Interf Sci, 2015, 455: 134-144.

[25]

Zhao B, Lin L, He DN. Phase and morphological transitions of titania/titanate nanostructures from an acid to an alkali hydrothermal environment. J Mater Chem A, 2013, 1(5): 1659-1668.

[26]

Tompsett GA, Bowmaker GA, Cooney RP, et al. The Raman spectrum of brookite, TiO2 (Pbca, Z = 8). J Raman Spectrosc, 1995, 26(1): 57-62.

[27]

Iliev MN, Hadjiev VG, Litvinchuk AP. Raman and infrared spectra of brookite (TiO2): experiment and theory. Vib Spectrosc, 2013, 64(1): 148-152.

[28]

Zhang H, Banfield J. Thermodynamic analysis of phase stability of nanocrystalline titania. J Mater Chem, 1998, 8(9): 2073-2076.

[29]

Jolivet JP. Metal oxide chemistry and synthesis: from solution to solid state, 2000, New York: Wiley.

[30]

Kanna M, Wongnawa S. Mixed amorphous, nanocrystalline TiO2 powders prepared by sol–gel method: characterization and photocatalytic study. Mater Chem Phys, 2008, 110(1): 166-175.

[31]

Yu JG, Yu HG, Cheng B, et al. The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition. J Phys Chem B, 2003, 107(50): 13871-13879.

[32]

Liu CP, Yu T, Tan X. Characterization and photocatalytic activity of mixed nanocrystalline TiO2 powders prepared by xerogel-hydrothermal method in different acid solutions. Trans Tianjin Univ, 2016, 22(5): 473-479.

[33]

Yin S, Hasegawa H, Maeda D, et al. Synthesis of visible-light-active nanosize rutile titania photocatalyst by low temperature dissolution–reprecipitation process. J Photochem Photobiol A Chem, 2004, 163(1): 1-8.

[34]

Yang HY, Chen F, Jiao YC, et al. Investigation of phase transitions for the hydrothermal formation of TiO2 in the presence of F ions. Chem Eng J, 2013, 214(4): 229-236.

[35]

Djaoued Y, Thibodeau M, Robichaud J, et al. Photocatalytic degradation of domoic acid using nanocrystalline TiO2 thin films. J Photochem Photobiol A Chem, 2008, 193(2–3): 271-283.

[36]

Di Paola A, Cufalo G, Addamo M, et al. Photocatalytic activity of nanocrystalline TiO2 (brookite, rutile and brookite-based) powders prepared by thermohydrolysis of TiCl4 in aqueous chloride solutions. Colloids Surf A, 2008, 317(1–3): 366-376.

[37]

Prieto-Mahaney O, Murakami N, Abe R, et al. Correlation between photocatalytic activities and structural and physical properties of titanium (IV) oxide powders. Chem Lett, 2009, 38(3): 238-239.

[38]

Wang J, Zhang WD. Modification of TiO2 nanorod arrays by graphite-like C3N4 with high visible light photoelectrochemical activity. Electrochim Acta, 2012, 71(3): 10-16.

[39]

Di Paola A, Bellardita M, Ceccato R, et al. Highly active photocatalytic TiO2 powders obtained by thermohydrolysis of TiCl4 in water. J Phys Chem C, 2009, 113(34): 15166-15174.

[40]

Xiao Q, Si ZC, Zhang J, et al. Photoinduced hydroxyl radical and photocatalytic activity of samarium-doped TiO2 nanocrystalline. J Hazard Mater, 2008, 150(1): 62-67.

[41]

Ishibashi K, Fujishima A, Watanabe T, et al. Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique. Electrochem Commun, 2000, 2(3): 207-210.

[42]

Choi M, Yong K. A facile strategy to fabricate high-quality single crystalline brookite TiO2 nanoarrays and their photoelectrochemical properties. Nanoscale, 2014, 6(22): 13900-13909.

[43]

Hoffmann MR, Choi ST, Martin W, et al. Environmental applications of semiconductor photocatalysis. Chem Rev, 1995, 95(1): 69-96.

[44]

Liu H, Cheng SA, Wu M, et al. Photoelectrocatalytic degradation of sulfosalicylic acid and its electro-chemical impedance spectroscopy investigation. J Phys Chem A, 2000, 104(30): 7016-7020.

[45]

Linsebigler AL, Lu G, Yates JT. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev, 1995, 95(3): 735-758.

[46]

Liu G, Wang XW, Wang LZ, et al. Drastically enhanced photocatalytic activity in nitrogen doped mesoporous TiO2 with abundant surface states. J Colloid Interface Sci, 2009, 334(2): 171-175.

[47]

Zhao B, Chen F, Huang QW, et al. Brookite TiO2 nanoflowers. Chem Commun, 2009, 34(34): 5115-5117.

[48]

Verma A, Samanta SB, Bakhshi AK, et al. Effect of stabilizer on structural, optical and electrochemical properties of sol–gel derived spin coated TiO2 films. Sol Energy Mater Sol Cells, 2005, 88(1): 47-64.

[49]

Xiang Q, Yu J, Wong PK. Quantitative characterization of hydroxyl radicals produced by various photocatalysts. J Colloid Interface Sci, 2011, 357(1): 163-167.

[50]

Lin HX, Wang XX, Fu XZ. Properties and distribution of the surface hydroxyl groups of TiO2. Prog Chem, 2007, 19(5): 665-670.

[51]

Hao H, Zhang J. Low temperature synthesis of crystalline mesoporous titania with high photocatalytic activity by post-treatment in nitric acid ethanol solution. Mater Lett, 2009, 63(1): 106-108.

AI Summary AI Mindmap
PDF

152

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/