Quasi-Spherical Brookite TiO2 Nanostructures Synthesized Using Solvothermal Method in the Presence of Oxalic Acid
Yifei Wang , Yunling Zou , Qianqian Shang , Xin Tan , Tao Yu , Xianshou Huang , Wenxin Shi , Yao Xie , Gao Yan , Xiaoyi Wang
Transactions of Tianjin University ›› 2018, Vol. 24 ›› Issue (4) : 326 -339.
Quasi-Spherical Brookite TiO2 Nanostructures Synthesized Using Solvothermal Method in the Presence of Oxalic Acid
Brookite TiO2, the latest TiO2 photocatalyst, promises to be an interesting candidate for photocatalytic applications because of its unique physical and chemical properties. In this study, pure-phase brookite TiO2 with a quasi-spherical nanostructure was successfully synthesized via a solvothermal method using tetrabutyl titanate (Ti(OC4H9)4, TBOT) as the Ti source in the presence of oxalic acid. NaOH was used to regulate the pH of solution. The structure and morphology of the samples were then analyzed using multiple methods, such as X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) measurements and ultraviolet–visible diffuse spectroscopy (UV–Vis). Photocatalytic activities of the as-synthesized brookite TiO2 were evaluated by degrading aqueous methylene blue solution under UV light irradiation. The effect of thermal treatment temperature on photocatalytic activity of the samples was also investigated. The produced brookite TiO2 nanopowders calcined at 500 °C for 2 h showed the highest photocatalytic activity, and the corresponding degradation rate of methylene blue (10 mg/L) reached 96.7% after 90 min of illumination. In addition, the formation mechanism of pure-phase brookite TiO2 was investigated. It was found that the formation of pure-phase brookite TiO2 in this study was ascribed to the combined action of oxalic acid and sodium hydroxide.
TiO2 / Brookite / Oxalic acid / Photocatalytic properties
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
/
| 〈 |
|
〉 |