Study of 2-Propanol Photocatalytic Degradation on Surface of Phase-Ratio-Controlled TiO2 Nanoparticles

Yifei Wang , Hongmei Wang , Xin Tan

Transactions of Tianjin University ›› 2018, Vol. 24 ›› Issue (1) : 1 -7.

PDF
Transactions of Tianjin University ›› 2018, Vol. 24 ›› Issue (1) : 1 -7. DOI: 10.1007/s12209-017-0077-7
Research Article

Study of 2-Propanol Photocatalytic Degradation on Surface of Phase-Ratio-Controlled TiO2 Nanoparticles

Author information +
History +
PDF

Abstract

The crystal form of TiO2 is a crucial focus of research on the photocatalytic degradation of gaseous pollutants by TiO2-based composite photocatalysts. To explore the synergistic effect of mixed crystalline TiO2 on gaseous organic-pollutant photocatalytic degradation, we synthesized a series of TiO2 nanoparticles with controllable phase ratios. We explored the role of the TiO2 phase ratio on the photocatalytic activity and degradation pathway in the photodegradation of 2-propanol (IPA). We estimated the crystallite size and crystal proportions of anatase and rutile by X-ray diffraction. We used the Brunauer–Emmett–Teller method to calculate the specific surface area and Fourier transform infrared spectroscopy to characterize the surface chemistry of the samples. Our results show the photocatalytic activities of pure anatase and the sample with 8.6% rutile to be much better than those of the samples with a phase junction and pure rutile. As such, anatase is the better option for the study of photodegradation design and preparation of gas-phase organic pollutants.

Keywords

Mixed-phase TiO2 / Phase junctions / Photocatalytic degradation / 2-Propanol

Cite this article

Download citation ▾
Yifei Wang, Hongmei Wang, Xin Tan. Study of 2-Propanol Photocatalytic Degradation on Surface of Phase-Ratio-Controlled TiO2 Nanoparticles. Transactions of Tianjin University, 2018, 24(1): 1-7 DOI:10.1007/s12209-017-0077-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yamashita H, Harada M, Misaka J, et al. Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts. J Photochem Photobiol A, 2002, 148(1–3): 257-261.

[2]

Karakitsou KE, Verykios XE. Effects of altervalent cation doping of titania on its performance as a photocatalyst for water cleavage. Cheminform, 1993, 97(6): 1184-1189.

[3]

And HT, Tanaka M. Dependence of TiO2 photocatalytic activity upon its film thickness. Langmuir, 2008, 13(2): 360-364.

[4]

Zhu J, Zheng W, He B, et al. Characterization of Fe–TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water. J Mol Catal A-C, 2004, 216(1): 35-43.

[5]

Nicola A. Why are there so few magnetic ferroelectrics?. J Phys Chem B, 2000, 104: 6694-6709.

[6]

Rivera AP, Tanaka K, Hisanaga T, et al. Photocatalytic degradation of pollutant over TiO2 in different crystal structures. Appl Catal B-Environ, 1993, 3(1): 37-44.

[7]

Carp O, Huisman CL, Reller A, et al. Photoinduced reactivity of titanium dioxide. Prog Solid State Chem, 2004, 32(1–2): 33-177.

[8]

Liu G, Chen Z, Dong C, et al. Visible light photocatalyst: iodine-doped mesoporous titania with a bicrystalline framework. J Phys Chem B, 2006, 110(42): 20823-20828.

[9]

Hurum DC, Agrios AG, Gray KA, et al. Explaining the enhanced photocatalytic activity of degussa P25 mixed-phase TiO2 using EPR. J Phys Chem B, 2003, 107(19): 4545-4549.

[10]

Hurum DC, Gray KA, Rajh T, et al. Recombination pathways in the Degussa P25 formulation of TiO2: surface versus lattice mechanisms. J Phys Chem B, 2005, 109(2): 977-980.

[11]

Zachariah A, Baiju KV, Shukla S, et al. Synergistic effect in photocatalysis as observed for mixed-phase nanocrystalline titania processed via sol–gel solvent mixing and calcinations. J Phys Chem C, 2008, 112: 11345-11356.

[12]

Li G, Gray KA. The solid–solid interface: explaining the high and unique photocatalytic reactivity of TiO-based nanocomposite materials. Chem Phys, 2007, 339(1): 173-187.

[13]

Liu G, Yan X, Chen Z, et al. Synthesis of rutile–anatase core–shell structured TiO2 for photocatalysis. J Mater Chem, 2007, 19(36): 6590-6596.

[14]

Likodimos V, Chrysi A, Calamiotou M. Microstructure and charge trapping assessment in highly reactive mixed phase TiO2 photocatalysts. Appl Catal B-Environ, 2016, 192: 242-252.

[15]

Li Z, Cong S, Xu Y. Brookite vs. anatase TiO2 in the photocatalytic activity for organic degradation in water. ACS Catal, 2016, 4(9): 3273-3280.

[16]

Xu W, Raftery D, Francisco JS. Effect of irradiation sources and oxygen concentration on the photocatalytic oxidation of 2-propanol and acetone studied by in situ FTIR. J Phys Chem B, 2003, 07(19): 4537-4544.

[17]

Arana J, Alonso AP, Rodriguez JMD, et al. FTIR study of photocatalytic degradation of 2-propanol in gas phase with different TiO2 catalysts. Appl Catal B-Environ, 2009, 89(1): 204-213.

[18]

Salazar C, Nanny MA. Influence of hydrogen bonding upon the TiO2 photooxidation of isopropanol and acetone in aqueous solution. J Catal, 2010, 269(2): 404-410.

[19]

Larson SA, Widegren JA, Falconer JL. Transient studies of 2-propanol photocatalytic oxidation on titania. J Catal, 1995, 157(2): 611-625.

[20]

Arsac F, Bianchi D, Chovelon JM, et al. Experimental microkinetic approach of the photocatalytic oxidation of isopropyl alcohol on TiO2. Part 1. Surface elementary steps involving gaseous and adsorbed C3H xO Species. J Phys Chem A, 2006, 110(12): 4202-4212.

[21]

Ohtani B, Iwai K, Nishimoto S, et al. Role of platinum deposits on titanium(IV) oxide particles: structural and kinetic analyses of photocatalytic reaction in aqueous alcohol and amino acid solutions. J Phys Chem B, 1997, 101(17): 3349-3359.

[22]

Sclafani A, Herrmann JM. Influence of metallic silver and of platinum–silver bimetallic deposits on the photocatalytic activity of titania (anatase and rutile) in organic and aqueous media. J Photochem Photobiol A: Chem, 1998, 113(2): 181-188.

[23]

Marcì G, García-López E, Palmisano L. Photo-assisted degradation of 2-propanol in gas–solid regime by using TiO2 impregnated with heteropoly acid H3PW12O40. Catal Today, 2009, 144(1): 42-47.

[24]

Fujishima A, Rao TN, Tryk DA. Titanium dioxide photocatalysis. J Photochem Photobiol C, 2000, 1(1): 1-21.

[25]

Wang H, Tan X, Yu T. Preparation and photoelectric property of TiO2 nanoparticles with controllable phase junctions. Appl Surf Sci, 2014, 321: 531-537.

[26]

Zheng W, Liu X, Yan Z, et al. Ionic liquid-assisted synthesis of large-scale TiO2 nanoparticles with controllable phase by hydrolysis of TiCl4. ACS Nano, 2008, 3(1): 115-122.

[27]

Zhang J, Xu Q, Feng Z, et al. Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angew Chem Int Ed, 2008, 47(9): 1766-1769.

[28]

Nosaka AY, Fujiwara T, Yagi H, et al. Characteristics of water adsorbed on TiO2 photocatalytic systems with increasing temperature as studied by solid-state 1H NMR spectroscopy. J Phys Chem B, 2004, 108(26): 9121-9125.

[29]

Bolis V, Bordiga S, Lamberti C, et al. Heterogeneity of framework Ti(IV) in Ti− silicalite as revealed by the adsorption of NH3. Combined calorimetric and spectroscopic study. Langmuir, 1999, 15(18): 5753-5764.

[30]

Haffad D, Chambellan A, Lavalley JC. Propan-2-ol transformation on simple metal oxides TiO2, ZrO2 and CeO2. J Mol Catal A: Chem, 2001, 168(1): 153-164.

[31]

Arana J, Alonso AP, Rodriguez JMD, et al. FTIR study of photocatalytic degradation of 2-propanol in gas phase with different TiO2 catalysts. Appl Catal B: Environ, 2009, 89(1): 204-213.

[32]

Neppolian B, Yamashita H, Okada Y, et al. Preparation of TiO2 photocatalysts by multi-gelation and their photocatalytic reactivity for the degradation of 2-propanol. Chem Lett, 2004, 33(3): 268-269.

[33]

Hernández-Alonso MD, Tejedor-Tejedor I, Coronado JM, et al. Operando FTIR study of the photocatalytic oxidation of acetone in air over TiO2–ZrO2 thin films. Catal Today, 2009, 143(3): 364-373.

[34]

El-Maazawi M, Finken AN, Nair AB, et al. Adsorption and photocatalytic oxidation of acetone on TiO2: an in situ transmission FT-IR study. J Catal, 2000, 191(1): 138-146.

AI Summary AI Mindmap
PDF

147

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/