Fuzzy Fractional-Order Fast Terminal Sliding Mode Control for Some Chaotic Microcomponents

Jianxin Han , Qichang Zhang , Wei Wang , Jing Wang

Transactions of Tianjin University ›› 2017, Vol. 23 ›› Issue (3) : 289 -294.

PDF
Transactions of Tianjin University ›› 2017, Vol. 23 ›› Issue (3) : 289 -294. DOI: 10.1007/s12209-017-0050-5
Research Article

Fuzzy Fractional-Order Fast Terminal Sliding Mode Control for Some Chaotic Microcomponents

Author information +
History +
PDF

Abstract

In this paper, we propose a novel fractional-order fast terminal sliding mode control method, based on an integer-order scheme, to stabilize the chaotic motion of two typical microcomponents. We apply the fractional Lyapunov stability theorem to analytically guarantee the asymptotic stability of a system characterized by uncertainties and external disturbances. To reduce chattering, we design a fuzzy logic algorithm to replace the traditional signum function in the switching law. Lastly, we perform numerical simulations with both the fractional-order and integer-order control laws. Results show that the proposed control law is effective in suppressing chaos.

Keywords

Chaos control / Fast terminal sliding mode / Fractional calculus / Fuzzy algorithm

Cite this article

Download citation ▾
Jianxin Han, Qichang Zhang, Wei Wang, Jing Wang. Fuzzy Fractional-Order Fast Terminal Sliding Mode Control for Some Chaotic Microcomponents. Transactions of Tianjin University, 2017, 23(3): 289-294 DOI:10.1007/s12209-017-0050-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Andrievskii BR, Fradkov AL. Control of chaos: methods and applications. I. Methods. Autom Remote Control, 2003, 64(5): 673-713.

[2]

Drăgănescu GE, Bereteu L, Ercuţa A, et al. Anharmonic vibrations of a nano-sized oscillator with fractional damping. Commun Nonlinear Sci Numer Simul, 2010, 15(4): 922-926.

[3]

Tavazoei MS, Haeri M. Chaos control via a simple fractional-order controller. Phys Lett A, 2008, 372(6): 798-807.

[4]

Efe . A sufficient condition for checking the attractiveness of a sliding manifold in fractional order sliding mode control. Asian J Control, 2012, 14(4): 1118-1122.

[5]

Tang YG, Zhang XY, Zhang DL, et al. Fractional order sliding mode controller design for antilock braking systems. Neurocomputing, 2013, 111: 122-130.

[6]

Dadras S, Momeni HR. Fractional terminal sliding mode control design for a class of dynamical systems with uncertainty. Commun Nonlinear Sci Numer Simul, 2012, 17(1): 367-377.

[7]

Yin C, Zhong SM, Chen WF. Design of sliding mode controller for a class of fractional-order chaotic systems. Commun Nonlinear Sci Numer Simul, 2012, 17(1): 356-366.

[8]

Delavari H, Ghaderi R, Ranjbar A, et al. Fuzzy fractional order sliding mode controller for nonlinear systems. Commun Nonlinear Sci Numer Simul, 2010, 15(4): 963-978.

[9]

Podlubny I. Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, 1998, New York: Academic Press.

[10]

Li CP, Deng WH. Remarks on fractional derivatives. Appl Math Comput, 2007, 187(2): 777-784.

[11]

Li Y, Chen YQ, Podlubny I. Stability of fractional-order nonlinear dynamic systems: lyapunov direct method and generalized Mittag-Leffler stability. Comput Math Appl, 2010, 59(5): 1810-1821.

[12]

Yu SH, Yu XH, Shirinzadeh B, et al. Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica, 2005, 41(11): 1957-1964.

[13]

Aghababa MP. A switching fractional calculus-based controller for normal non-linear dynamical systems. Nonlinear Dyn, 2013, 75(3): 577-588.

[14]

Yau HT, Wang CC, Hsieh CT, et al. Nonlinear analysis and control of the uncertain micro-electro-mechanical system by using a fuzzy sliding mode control design. Comput Math Appl, 2011, 61(8): 1912-1916.

[15]

Oustaloup A, Levron F, Mathieu B, et al. Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Trans Circ Syst I Fund Theory Appl, 2000, 47(1): 25-39.

[16]

Haghighi HS, Markazi AHD. Chaos prediction and control in MEMS resonators. Commun Nonlinear Sci Numer Simul, 2010, 15(10): 3091-3099.

[17]

Bahrami A, Nayfeh AH. On the dynamics of tapping mode atomic force microscope probes. Nonlinear Dyn, 2012, 70(2): 1605-1617.

[18]

Basso M, Giarre L, Dahleh M, et al. Complex dynamics in a harmonically excited Lennard-Jones oscillator: microcantilever-sample interaction in scanning probe microscopes. J Dyn Syst Meas Control Trans ASME, 2000, 122(1): 240-245.

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/