Preparation and photocatalytic activity of BiOBr/TiO2 heterojunction nanocomposites

Xin Tan , Xiangli Li , Tao Yu , Yang Zhao

Transactions of Tianjin University ›› 2016, Vol. 22 ›› Issue (3) : 211 -217.

PDF
Transactions of Tianjin University ›› 2016, Vol. 22 ›› Issue (3) : 211 -217. DOI: 10.1007/s12209-016-2778-8
Article

Preparation and photocatalytic activity of BiOBr/TiO2 heterojunction nanocomposites

Author information +
History +
PDF

Abstract

An efficient visible-light-responsive BiOBr/TiO2 heterojunction nanocomposite was fabricated successfully using in-situ depositing technique at room temperature by introducing BiOBr onto the surface of TiO2 nanobelts pre-prepared by hydrothermal reaction and etched with H2SO4. The obtained particles were characterized by XRD, SEM, TEM, XPS, UV-Vis DRS and PL techniques. BiOBr/TiO2 heterojunction nanocomposites with different mass ratios of m(BiOBr)/m(TiO2) were discussed in order to get the best photocatalytic activity, and BiOBr/TiO2-1.0 was proved to be the optimal mass ratio. BiOBr/TiO2-1.0 exhibited excellent photocatalytic activity in the degradation of RhB compared with TiO2 nanobelts, pure BiOBr and the mechanical mixture of TiO2 nanobelts and BiOBr. At last, a possible mechanism of photocatalytic enhancement was proposed.

Keywords

photocatalysis / BiOBr / TiO2 nanobelt / heterojunction / nanocomposite / visible light

Cite this article

Download citation ▾
Xin Tan, Xiangli Li, Tao Yu, Yang Zhao. Preparation and photocatalytic activity of BiOBr/TiO2 heterojunction nanocomposites. Transactions of Tianjin University, 2016, 22(3): 211-217 DOI:10.1007/s12209-016-2778-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li Y, White T J, Lim S H. Low-temperature synthesis and microstructural control of titania nano-particles[J]. Journal of Solid State Chemistry, 2004, 177(4): 1372-1381.

[2]

Nguyen T B, Hwang M J, Ryu K S. High adsorption capacity of V-doped TiO2 for decolorization of methylene blue[J]. Applied Surface Science, 2012, 258(19): 7299-7305.

[3]

Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2000, 1(1): 1-21.

[4]

Fujishima A, Zhang X, Tryk D A. TiO2 photocatalysis and related surface phenomena[J]. Surface Science Reports, 2008, 63(12): 515-582.

[5]

Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293(5528): 269-271.

[6]

Zhang J, Xie S, Ho Y S. Removal of fluoride ions from aqueous solution using modified attapulgite as adsorbent[J]. Journal of Hazardous Materials, 2009, 165(1): 218-222.

[7]

Yuan R, Chen T, Fei E, et al. Surface chlorination of TiO2-based photocatalysts: A way to remarkably improve photocatalytic activity in both UV and visible region[J]. ACS Catalysis, 2011, 1(3): 200-206.

[8]

Tan X, Shi T, Yu T, et al. High-reactive heterojunction TiO2/SrTiO3 nanotube arrays and its photoelectrocatalytic performance[J]. Journal of Tianjin University: Science and Technology, 2014, 47(11): 955-961.

[9]

Tan X, Hu W, Yu T, et al. Photoelectrochemical properties of heterojunction TiO2/SrTiO3 nanotube arrays with exposed TiO2 highly reactive facet[J]. Journal of Tianjin University: Science and Technology, 2016, 49(3): 253-260.

[10]

Yang J, Wang X, X, et al. Preparation and photocatalytic activity of BiOX-TiO2 composite films(X=Cl, Br, I)[J]. Ceramics International, 2014, 40(6): 8607-8611.

[11]

Li L, Zhang M, Liu Y, et al. Hierarchical assembly of BiOCl nanosheets onto bicrystalline TiO2 nanofiber: Enhanced photocatalytic activity based on photoinduced interfacial charge transfer[J]. Journal of Colloid and Interface Science, 2014, 435: 26-33.

[12]

Zhu G, Hojamberdiev M, Tan C, et al. Photodegradation of organic dyes with anatase TiO2 nanoparticles-loaded BiOCl nanosheets with exposed {001} facets under simulated solar light[J]. Materials Chemistry and Physics, 2014, 147(3): 1146-1156.

[13]

Guerrero M, Altube A, García-Lecina E, et al. Facile in situ synthesis of BiOCl nanoplates stacked to highly porous TiO2: A synergistic combination for environmental remediation[J]. ACS Applied Materials & Interfaces, 2014, 6(16): 13994-14000.

[14]

Liu H, Xu G, Wang J, et al. Photoelectrochemical properties of TiO2 nanotube arrays modified with BiOCl nanosheets[J]. Electrochimica Acta, 2014, 130: 213-221.

[15]

Liu Z, Xu X, Fang J, et al. Synergistic degradation of eosin Y by photocatalysis and electrocatalysis in UV irradiated solution containing hybrid BiOCl/TiO2 particles[J]. Water, Air & Soil Pollution, 2012, 223(5): 2783-2798.

[16]

Zhang L, Zhang J, Zhang W, et al. Photocatalytic activity of attapulgite-BiOCl-TiO2 toward degradation of methyl orange under UV and visible light irradiation[J]. Materials Research Bulletin, 2015, 66: 109-114.

[17]

Zhang J, Zhang L, Zhou S, et al. Exceptional visible-lightinduced photocatalytic activity of attapulgite-BiOBr-TiO2 nanocomposites[J]. Applied Clay Science, 2014, 90: 135-140.

[18]

Wang X, Yang W, Li F, et al. Construction of amorphous TiO2/BiOBr heterojunctions via facets coupling for enhanced photocatalytic activity[J]. Journal of Hazardous Materials, 2015, 292: 126-136.

[19]

Wei X X, Cui H, Guo S, et al. Hybrid BiOBr-TiO2 nanocomposites with high visible light photocatalytic activity for water treatment[J]. Journal of Hazardous Materials, 2013, 263: 650-658.

[20]

Zhang Y, Liu S, Xiu Z, et al. TiO2/BiOI heterostructured nanofibers: Electrospinning-solvothermal two-step synthesis and visible-light photocatalytic performance investigation[J]. Journal of Nanoparticle Research, 2014, 16(5): 2375-2383.

[21]

Zhang X, Zhang L, Xie T, et al. Low-temperature synthesis and high visible-light-induced photocatalytic activity of BiOI/TiO2 heterostructures[J]. The Journal of Physical Chemistry C, 2009, 113(17): 7371-7378.

[22]

Dai G, Yu J, Liu G. Synthesis and enhanced visible-light photoelectrocatalytic activity of p-n junction BiOI/TiO2 nanotube arrays[J]. The Journal of Physical Chemistry C, 2011, 115(15): 7339-7346.

[23]

Li Y, Wang J, Liu B, et al. BiOI-sensitized TiO2 in phenol degradation: A novel efficient semiconductor sensitizer[J]. Chemical Physics Letters, 2011, 508(1): 102-106.

[24]

Shi X, Chen X, Chen X, et al. PVP assisted hydrothermal synthesis of BiOBr hierarchical nanostructures and high photocatalytic capacity[J]. Chemical Engineering Journal, 2013, 222: 120-127.

[25]

Yu C, Cao F, Li G, et al. Novel noble metal(Rh, Pd, Pt)/BiOX(Cl, Br, I)composite photocatalysts with enhanced photocatalytic performance in dye degradation[J]. Separation and Purification Technology, 2013, 120: 110-122.

[26]

Shang M, Wang W, Zhang L. Preparation of BiOBr lamellar structure with high photocatalytic activity by CTAB as Br source and template[J]. Journal of Hazardous Materials, 2009, 167(1): 803-809.

[27]

Zhang D, Li J, Wang Q, et al. High {001} facets dominated BiOBr lamellas: Facile hydrolysis preparation and selective visible-light photocatalytic activity[J]. Journal of Materials Chemistry A, 2013, 1(30): 8622-8629.

[28]

Yang Z, Li J, Cheng F, et al. BiOBr/protonated graphitic C3N4 heterojunctions: Intimate interfaces by electrostatic interaction and enhanced photocatalytic activity[J]. Journal of Alloys and Compounds, 2015, 634: 215-222.

[29]

Chang F, Li C, Chen J, et al. Enhanced photocatalytic performance of g-C3N4 nanosheets-BiOBr hybrids[J]. Superlattices and Microstructures, 2014, 76: 90-104.

[30]

Ye L, Liu J, Jiang Z, et al. Facets coupling of BiOBr-gC3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity[J]. Applied Catalysis B: Environmental, 2013, 142: 1-7.

[31]

Fu J, Tian Y, Chang B, et al. BiOBr-carbon nitride heterojunctions: Synthesis, enhanced activity and photocatalytic mechanism[J]. Journal of Materials Chemistry, 2012, 22(39): 21159-21166.

[32]

Xia J, Di J, Yin S, et al. Facile fabrication of the visiblelight-driven Bi2WO6/BiOBr composite with enhanced photocatalytic activity[J]. RSC Advances, 2014, 4(1): 82-90.

[33]

Meng X, Zhang Z. Synthesis, analysis, and testing of BiOBr-Bi2WO6 photocatalytic heterojunction semiconductors[J]. International Journal of Photoenergy, 2015, 630476.

[34]

Kong L, Jiang Z, Lai H H, et al. Unusual reactivity of visible-light-responsive AgBr-BiOBr heterojunction photocatalysts[J]. Journal of Catalysis, 2012, 293: 116-125.

[35]

Cao J, Xu B, Luo B, et al. Novel BiOI/BiOBr heterojunction photocatalysts with enhanced visible light photocatalytic properties[J]. Catalysis Communications, 2011, 13(1): 63-68.

[36]

Liu Z S, Ran H S, Wu B T, et al. Synthesis and characterization of BiOI/BiOBr heterostructure films with enhanced visible light photocatalytic activity[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 452: 109-114.

[37]

Meng X, Jiang L, Wang W, et al. Enhanced photocatalytic activity of BiOBr/ZnO heterojunction semiconductors prepared by facile hydrothermal method[J]. International Journal of Photoenergy, 2015, 747024.

[38]

Guan M L, Ma D K, Hu S W, et al. From hollow oliveshaped BiVO4 to n-p core-shell BiVO4@Bi2O3 microspheres: Controlled synthesis and enhanced visible-lightresponsive photocatalytic properties[J]. Inorganic Chemistry, 2010, 50(3): 800-805.

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/