High-Gm differential regulated cascode transimpedance amplifier

Sheng Xie , Xizi Tao , Luhong Mao , Qian Gao , Sicong Wu

Transactions of Tianjin University ›› 2016, Vol. 22 ›› Issue (4) : 345 -351.

PDF
Transactions of Tianjin University ›› 2016, Vol. 22 ›› Issue (4) : 345 -351. DOI: 10.1007/s12209-016-2758-z
Article

High-Gm differential regulated cascode transimpedance amplifier

Author information +
History +
PDF

Abstract

A differential cross-coupled regulated cascode(RGC)transimpedance amplifier(TIA)is proposed. The theory of multi-stage common-source (CS) configuration as an auxiliary amplifier to enhance the bandwidth and output impedance of RGC topology is analyzed. Additionally, negative Miller capacitance and shunt active inductor compensation are exploited to further expand the bandwidth. The proposed RGC TIA is simulated based on UMC 0.18 µm standard CMOS process. The simulation results demonstrate that the proposed TIA has a high transimpedance of 60.5 dBΩ, and a -3 dB bandwidth of 5.4 GHz is achieved for 0.5 pF input capacitance. The average equivalent input noise current spectral density is about 20 pA/Hz1/2 in the interested frequency, and the TIA consumes 20 mW DC power under 1.8 V supply voltage. The voltage swing is 460 mVpp, and the saturation input current is 500 µA.

Keywords

transimpedance amplifier / regulated cascode / cross-coupled / shunt active inductor

Cite this article

Download citation ▾
Sheng Xie, Xizi Tao, Luhong Mao, Qian Gao, Sicong Wu. High-Gm differential regulated cascode transimpedance amplifier. Transactions of Tianjin University, 2016, 22(4): 345-351 DOI:10.1007/s12209-016-2758-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tian J, Zhou G, Zhang N, et al. Using wavelength routing in the optical interconnection computer network[J]. Transactions of Tianjin University, 2000, 6(2): 107-111.

[2]

Jiao S, Ye Y, Chen T, et al. 2.5 Gb/s GaAs PIN/PHEMT monolithic integrated optical receiver front end[J]. Journal of Optoelectronics ·Laser, 2008, 19(2): 191-195.

[3]

Xie S, Guo J, Guan K, et al. Design and realization of InP/AlGaInAs multiple quantum well ring laser[J]. Transactions of Tianjin University, 2014, 20(6): 402-406.

[4]

Seifouri M, Amiri P, Rakide M. Design of broadband transimpedance amplifier for optical communication systems[J]. Microelectronic Journal, 2015, 46(8): 679-684.

[5]

Li Y, Huang H, J, et al. GaAs based InP/InGaAs HBT for monolithic integrated optical receiver application[J]. Journal of Optoelectronics ·Laser, 2009, 20(1): 1-4.

[6]

Xie S, Hou Y, Chen C, et al. Research and progress of InP-based OEIC optical receiver[J]. Semiconductor Optoelectronics, 2008, 29(3): 319-323.

[7]

Huang B, Zhang X, Chen Hongda. 1-Gb/s zero-pole cancellation CMOS transimpedance amplifier for Gigabit Ethernet applications[J]. Journal of Semiconductors, 2009, 30(10): 105005

[8]

Aznar F, Gaberl W, Zimmermann H. A 0. 18 µm CMOS transimpedance amplifier with 26 dB dynamic range at 2.5 Gb/s[J]. Microelectronics Journal, 2011, 42(10): 1136-1142.

[9]

Park S M, Yoo H J. 1.25-Gb/s regulated cascode CMOS transimpedance amplifier for Gigabit Ethernet applications[J]. IEEE Journal of Solid-State Circuits, 2004, 39(1): 112-121.

[10]

Lu T T, Lee H C, Wang C S, et al. A 4.9-mW 4-Gb/s singleto-differential TIA with current-amplifying regulated cascode[C]. International Symposium on VLSI Design, Automation, and Test, 2012.

[11]

Shirazi A H M, Molavi R, Woo P S, et al. A low-power DCto-27-GHz transimpedance amplifier in 0.13-µm CMOS using inductive-peaking and current-reuse techniques[C]. International Midwest Symposium on Circuits and Systems, 2014.

[12]

Lee J, Park H G, Kim I S, et al. A 6 Gb/s low power transimpedance amplifier with inductor peaking and gain control for 4-channel passive optical network in 0.13 µm CMOS[J]. Journal of Semiconductor Technology and Science, 2015, 15(1): 122-130.

[13]

Aflatouni F, Hashemi H. A 1.8 mW wideband 57 dB? transimpedance amplifier in 0.13 μm CMOS[C]. IEEE Radio Frequency Integrated Circuits Symposium, 2009.

[14]

Atef M, Zimmermann H. Optical receiver using noise cancelling with an integrated photodiode in 40 nm CMOS technology[J]. IEEE Transactions on Circuits and Systems—I: Regular Papers, 2013, 60(7): 1929-1936.

[15]

Talarico C, Agrawal G, Roveda J W. A 60 dBΩ 2.9 GHz 0.18 µm CMOS transimpedance amplifier for a fiber optic receiver application[C]. International Midwest Symposium on Circuits and Systems, 2014.

[16]

Comer D J, Comer D T, Perkins J B, et al. Bandwidth extension of high-gain CMOS stages using active negative capacitance[C]. 13th IEEE International Conference on Electronics, Circuits and Systems, 2006.

AI Summary AI Mindmap
PDF

187

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/