130 nm CMOS multi-stage synthetic transmission line based amplifier beyond 100 GHz

Mingming Zhang , Hsien-Shun Wu , Guangfu Li , Xin Wang , Ching-Kuang C. Tzuang

Transactions of Tianjin University ›› 2016, Vol. 22 ›› Issue (1) : 1 -6.

PDF
Transactions of Tianjin University ›› 2016, Vol. 22 ›› Issue (1) : 1 -6. DOI: 10.1007/s12209-016-2743-6
Article

130 nm CMOS multi-stage synthetic transmission line based amplifier beyond 100 GHz

Author information +
History +
PDF

Abstract

A 130 nm CMOS complementary-conducting-strip transmission line(CCS-TL)based multi-stage amplifier beyond 100 GHz was presented in this paper. Different structural parameters were investigated to achieve higher quality factor for the matching circuits. Moreover, CCS-TL based Marchand balun was implemented to achieve higher output power. The measured small signal gain was higher than 5 dB from 101 GHz to 110 GHz. DC power consumption was 67.2 mW with VD=1.2 V, and the chip size including contact PADs was 1.12 mm×0.81 mm.

Keywords

CMOS / amplifier / Marchand balun / transmission line / 100 GHz

Cite this article

Download citation ▾
Mingming Zhang, Hsien-Shun Wu, Guangfu Li, Xin Wang, Ching-Kuang C. Tzuang. 130 nm CMOS multi-stage synthetic transmission line based amplifier beyond 100 GHz. Transactions of Tianjin University, 2016, 22(1): 1-6 DOI:10.1007/s12209-016-2743-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Nicolson S T, Tomkins A, Tang K W, et al. A 1. 2 V, 140 GHz receiver with on-die antenna in 65 nm CMOS [C]. IEEE Radio Frequency Integrated Circuits Symposium. Atlanta, USA, 2008.

[2]

Khanpour M, Tang K W, Garcia P, et al. A wideband Wband receiver front-end in 65 nm CMOS [J]. IEEE Journal of Solid-State Circuits, 2008, 43(8): 1717-1730.

[3]

Xu Z, Gu Q J, Chang M C F. 200 GHz CMOS amplifier working close to device fT [J]. Electronics Letters, 2011, 47(11): 639-641.

[4]

Momeni O. A 260 GHz amplifier with 9.2 dB gain and -3.9 dBm saturated power in 65 nm CMOS [C]. IEEE International Solid-State Circuits Conference. San Francisco, USA, 2013.

[5]

Lu C, Mahmoudi R v, Roermund A H M, et al. A 107 GHz LNA in 65 nm CMOS with inductive neutralization and slow-wave transmission lines [C]. IEEE Symposium on Communications and Vehicular Technology. Eindhoven, the Netherlands, 2012.

[6]

Yoshihara Y, Fujimoto R, Ono N, et al. A 60-GHz CMOS power amplifier with Marchand balun-based parallel power combiner [C]. IEEE Asian Solid-State Circuits Conference. Fukuoka, Japan, 2008.

[7]

Chen C C, Tzuang C K C. Synthetic quasi-TEM meandered transmission lines for compacted microwave integrated circuits [J]. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(6): 1637-1647.

[8]

Chiang M J, Wu H S, Tzuang C K C. Design of synthetic Quasi-TEM transmission line for CMOS compact integrated circuit [J]. IEEE Transactions on Microwave Theory and Techniques, 2007, 55(12): 2512-2520.

[9]

Wu Y H, Chiang M J, Wu H S, et al. 24-GHz 0.18-µm CMOS four-stage transmission line-based amplifier with high gain-area efficiency [C]. IEEE Asia-Pacific Microwave Conference. Macau, China, 2008.

[10]

Hsieh K A, Wu H S, Tsai K H, et al. A dual-band 10/24-GHz amplifier design incorporating dual-frequency complex load matching [J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(6): 1649-1657.

[11]

Yang S H, Tzuang C K C. 130-nm CMOS K-band twoelement differential power-combining oscillators [J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(3): 1174-1185.

[12]

Cheng Y, Hu C. MOSFET Modeling and BSIM3 User’s Guide [M], 1999, USA: Springer.

[13]

Heydari B, Bohsali M, Adabi E, et al. Low-power mmwave components up to 104 GHz in 90 nm CMOS [C]. IEEE International Solid-State Circuits Conference. San Francisco, USA, 2007.

[14]

Nicolson S T, Voinigescu S P. Methodology for simultaneous noise and impedance matching in W-band LNAs [C]. IEEE Compound Semiconductor Integrated Circuit Symposium. San Antonio, USA, 2006.

[15]

Masud M A, Zirath H, Ferndahl M, et al. 90 nm CMOS MMIC amplifier [C]. IEEE Radio Frequency Integrated Circuits Symposium. Atlanta, USA, 2008.

[16]

Fahimnia M, Mahmoud M T, Wan Y, et al. A 59-66 GHz highly stable millimeter wave amplifier in 130 nm CMOS technology [J]. IEEE Microwave and Wireless Components Letters, 2011, 21(6): 320-322.

[17]

Jin J D, Hsu S S H. A miniaturized 70-GHz broadband amplifier in 0.13-µm CMOS technology [J]. IEEE Transactions on Microwave Theory and Techniques, 2008, 56(12): 3086-3092.

[18]

Kim Y, Kwon Y. A 60 GHz cascode variable-gain lownoise amplifier with phase compensation in a 0.13 µm CMOS technology [J]. IEEE Microwave and Wireless Components Letters, 2012, 22(7): 372-374.

[19]

Wang T P, Wang H. A 71-80 GHz amplifier using 0.13-µm CMOS technology [J]. IEEE Microwave and Wireless Components Letters, 2007, 17(9): 685-687.

[20]

Doan C H, Emami S, Niknejad A M, et al. Millimeter-wave CMOS design [J]. IEEE Journal of Solid-State Circuits, 2005, 40(1): 144-155.

[21]

Kuo H C, Yang C Y, Yeh J F, et al. Design of a 0.13-µm Vband millimeter-wave CMOS low-noise amplifier and measurement methodology [C]. IEEE Asia-Pacific Microwave Conference. Macau, China, 2008.

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/