Estimation of DOA and polarization parameters with 2-level nested vector-sensor array based on quaternion model

Jichao Zhao , Haihong Tao

Transactions of Tianjin University ›› 2016, Vol. 22 ›› Issue (6) : 583 -589.

PDF
Transactions of Tianjin University ›› 2016, Vol. 22 ›› Issue (6) : 583 -589. DOI: 10.1007/s12209-016-2735-6
Article

Estimation of DOA and polarization parameters with 2-level nested vector-sensor array based on quaternion model

Author information +
History +
PDF

Abstract

The quaternion coherence problem exists in the data model of the conventional dimensional reduced quaternion estimation of signal parameters via rotational invariance techniques(DRQ-ESPRIT), and DRQ-ESPRIT would lose degrees of freedom(DOFs)when it is used to implement the spatial smooth operation. An improved DRQ-ESPRIT algorithm based on 2-level nested vector-sensor array is proposed in this paper. The quaternion coherence problem is solved by switching the multiplication sequence of spatial direction vector and electric field. Meanwhile, nested array and Khatri-Rao subspace approach are used to increase the number of DOFs, thus the proposed algorithm can estimate more incident sources than DRQ-ESPRIT, and the estimations of direction of arrival( DOA)and polarization parameters are more accurate. Simulation results demonstrate the effectiveness of the proposed algorithm.

Keywords

quaternion / nested array / Khatri-Rao subspace / direction of arrival(DOA) / polarization

Cite this article

Download citation ▾
Jichao Zhao, Haihong Tao. Estimation of DOA and polarization parameters with 2-level nested vector-sensor array based on quaternion model. Transactions of Tianjin University, 2016, 22(6): 583-589 DOI:10.1007/s12209-016-2735-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wong K T, Zoltowski M D. Uni-vector-sensor ESPRIT for multisource azimuth, elevation, and polarization estimation[J]. IEEE Transactions on Antennas and Propagation, 1997, 45(10): 1467-1474.

[2]

Wong K T, Yuan X. “Vector cross-product directionfinding” with an electromagnetic vector-sensor of six orthogonally oriented but spatially noncollocating dipoles/ loops[J]. IEEE Transactions on Signal Processing, 2011, 59(1): 160-171.

[3]

Yuan Xin. Estimating the DOA and the polarization of a polynomial-phase signal using a single polarized vectorsensor[J]. IEEE Transactions on Signal Processing, 2012, 60(3): 1270-1282.

[4]

Yuan X, Wong K T, Xu Z X, et al. Various compositions to form a triad of collocated dipoles/loops, for direction finding and polarization estimation[J]. IEEE Sensors Journal, 2012, 12(6): 1763-1771.

[5]

Zheng G, Wu B, Ma Y, et al. Direction of arrival estimation with a sparse uniform array orthogonally oriented and spatially separated dipole-triads[J]. IET Radar, Sonar and Navigation, 2014, 8(8): 885-894.

[6]

Zhang Y M, Obeidat B A, Amin M G. Spatial polarimetric time-frequency distributions for direction-of-arrival estimations[J]. IEEE Transactions on Signal Processing, 2006, 54(4): 1327-1340.

[7]

Tao J, Liu L, Lin Zhiyong. Joint DOA, range, and polarization estimation in the Fresnel region[J]. IEEE Transactions on Aerospace and Electronic System, 2011, 47(4): 2657-2672.

[8]

Wu Y, So H C, Hou C, et al. Passive localization of near-field sources with a polarization sensitive array[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(8): 2402-2408.

[9]

Nehorai A, Paldi E. Vector-sensor array processing for electromagnetic source localization[J]. IEEE Transactions on Signal Processing, 1994, 42(2): 376-398.

[10]

Hamilton W R. Theory of quaternions[J]. Proceedings of the Royal Irish Academy, 1844, 1-16.

[11]

Miron S, Le Bihan N, Mars J I. Quaternion-MUSIC for vector-sensor array processing[J]. IEEE Transactions on Signal Processing, 2006, 54(4): 1218-1229.

[12]

Le Bihan N, Miron S, Mars J I. MUSIC algorithm for vector-sensors array using biquaternions[J]. IEEE Transactions on Signal Processing, 2007, 55(9): 4523-4533.

[13]

Gong X, Xu Y, Liu Zhiwen. Quad-quaternion low rank approximation with applications to vector-sensor array direction of arrival estimation[J]. Transactions of Beijing Institute of Technology, 2008, 28(11): 1013-1017.

[14]

Li J, Tao Jianwu. The dimension reduction quaternion MUSIC algorithm for jointly estimating DOA and polarization[J]. Journal of Electronics & Information Technology, 2011, 33(1): 106-111.

[15]

Zhao J, Tao H, Gao Zhiqi. DOA estimation using dimension reduction quaternion estimation of signal parameters via rotational invariance techniques[J]. Chinese Journal of Radio Science, 2015, 30(3): 483-490.

[16]

Piya P, Vaidyanathan P P. Nested array:^A novel approach to array processing with enhanced degrees of freedom[J]. IEEE Transactions on Signal Processing, 2010, 58(8): 4167-4181.

[17]

Ma W, Hsieh T, Chi Chongyung. DOA estimation of quasi-stationary signals with less sensors than sources and unknown spatial noise covariance:^A Khatri-Rao subspace approach[J]. IEEE Transactions on Signal Processing, 2010, 58(4): 2168-2180.

[18]

Nie X, Li Liping. A computationally efficient subspace algorithm for 2-D DOA estimation with L-shaped array[J]. IEEE Signal Processing Letters, 2014, 21(8): 971-974.

[19]

Roy R, Paulraj A, Kailath T. ESPRIT—A subspace rotation approach to estimation of parameters of cisoids in noise[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1986, 34(5): 1340-1342.

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/