Two-level Bregman method for MRI reconstruction with graph regularized sparse coding

Qiegen Liu , Hongyang Lu , Minghui Zhang

Transactions of Tianjin University ›› 2016, Vol. 22 ›› Issue (1) : 24 -34.

PDF
Transactions of Tianjin University ›› 2016, Vol. 22 ›› Issue (1) : 24 -34. DOI: 10.1007/s12209-016-2581-4
Article

Two-level Bregman method for MRI reconstruction with graph regularized sparse coding

Author information +
History +
PDF

Abstract

In this paper, a two-level Bregman method is presented with graph regularized sparse coding for highly undersampled magnetic resonance image reconstruction. The graph regularized sparse coding is incorporated with the two-level Bregman iterative procedure which enforces the sampled data constraints in the outer level and updates dictionary and sparse representation in the inner level. Graph regularized sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge with a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can consistently reconstruct both simulated MR images and real MR data efficiently, and outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures.

Keywords

magnetic resonance imaging / graph regularized sparse coding / dictionary learning / Bregman iterative method / alternating direction method

Cite this article

Download citation ▾
Qiegen Liu, Hongyang Lu, Minghui Zhang. Two-level Bregman method for MRI reconstruction with graph regularized sparse coding. Transactions of Tianjin University, 2016, 22(1): 24-34 DOI:10.1007/s12209-016-2581-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lustig M, Donoho D L, Pauly J M. Sparse MRI: The application of compressed sensing for rapid MR imaging [J]. Magnetic Resonance in Medicine, 2007, 58(6): 1182-1195.

[2]

Donoho D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.

[3]

Liang D, Liu B, Wang J, et al. Accelerating SENSE using compressed sensing [J]. Magnetic Resonance in Medicine, 2009, 62(6): 1574-1584.

[4]

Lustig M, Santos J M, Donoho D L, et al. kt SPARSE: High frame rate dynamic MRI exploiting spatio-temporal sparsity[C]. Proceedings of the 13th Annual Meeting of ISMRM. Seattle, USA, 2006, 2420.

[5]

Ma S, Yin W, Zhang Y, et al. An efficient algorithm for compressed MR imaging using total variation and wavelets[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, Alaska, USA, 2008, 1-8.

[6]

Trzasko J, Manduca A. Highly undersampled magnetic resonance image reconstruction via homotopicminimization [J]. IEEE Transactions on Medical Imaging, 2009, 28(1): 106-121.

[7]

Akçakaya M, Nam S, Hu P, et al. Compressed sensing with wavelet domain dependencies for coronary MRI: A retrospective study [J]. IEEE Transactions on Medical Imaging, 2011, 30(5): 1090-1099.

[8]

Chartrand R. Fast algorithms for nonconvex compressive sensing: MRI reconstruction from very few data[C]. Proc IEEE Int Symp Biomed Imag (ISBI). Boston, Massachusetts, USA, 2009, 262-265.

[9]

Kim Y, Nadar M S, Bilgin A. Wavelet-based compressed sensing using Gaussian scale mixtures[C]. Proc ISMRM. Stockholm, Sweden, 2010, 4856.

[10]

Qiu C, Lu W, Vaswani N. Real-time dynamic MR image reconstruction using Kalman filtered compressed sensing[C]. Proc IEEE Int Conf Acoustics, Speech, Signal Process. Taipei, Taiwan, China, 2009, 393-396.

[11]

Qu X, Zhang W, Guo D, et al. Iterative thresholding compressed sensing MRI based on contourlet transform [J]. Inverse Problems in Science and Engineering, 2010, 18(6): 737-758.

[12]

Gho S M, Nam Y, Zho S Y, et al. Three dimension double inversion recovery gray matter imaging using compressed sensing [J]. Magnetic Resonance Imaging, 2010, 28(10): 1395-1402.

[13]

Guerquin-Kern M, Haberlin M, Pruessmann K P, et al. A fast wavelet-based reconstruction method for magnetic resonance imaging [J]. IEEE Transactions on Medical Imaging, 2011, 30(9): 1649-1660.

[14]

Chen L, Schabel M C, Di Bella E V R. Reconstruction of dynamic contrast enhanced magnetic resonance imaging of the breast with temporal constraints [J]. Magnetic Resonance Imaging, 2010, 28(5): 637-645.

[15]

Ravishankar S, Bresler Y. MR image reconstruction from highly undersampled k-space data by dictionary learning [J]. IEEE Transactions on Medical Imaging, 2011, 30(5): 1028-1041.

[16]

Liu Q, Wang S, Yang K, et al. Highly undersampled magnetic resonance imaging reconstruction using two-level Bregman method with dictionary updating [J]. IEEE Transactions on Medical Imaging, 2013, 32(7): 1290-1301.

[17]

Qu X, Guo D, Ning B, et al. Undersampled MRI reconstruction with patch-based directional wavelets [J]. Magnetic Resonance Imaging, 2012, 30(7): 964-977.

[18]

Qu X, Hou Y, Lam F, et al. Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator [J]. Medical Image Analysis, 2014, 18(6): 843-856.

[19]

Zheng M, Bu J, Chen C, et al. Graph regularized sparse coding for image representation [J]. IEEE Transactions on Image Processing, 2011, 20(5): 1327-1336.

[20]

Liu Q, Wang S, Luo J. A novel predual dictionary learning algorithm [J]. Journal of Visual Communication and Image Representation, 2012, 23(1): 182-193.

[21]

Yin W, Osher S, Goldfarb D, et al. Bregman iterative algorithms for 1 -minimization with applications to compressed sensing [J]. SIAM Journal on Imaging Sciences, 2008, 1(1): 143-168.

[22]

Osher S, Burger M, Goldfarb D, et al. An iterative regularization method for total variation-based image restoration [J]. Multiscale Modeling & Simulation, 2005, 4(2): 460-489.

[23]

Goldstein T, Osher S. The split Bregman method for ?1 -regularized problems [J]. SIAM Journal on Imaging Sciences, 2009, 2(2): 323-343.

[24]

Zhang X, Burger M, Bresson X, et al. Bregmanized nonlocal regularization for deconvolution and sparse reconstruction [J]. SIAM Journal on Imaging Sciences, 2010, 3(3): 253-276.

[25]

Ramani S, Fessler J A. Parallel MR image reconstruction using augmented Lagrangian methods [J]. IEEE Transactions on Medical Imaging, 2011, 30(3): 694-706.

[26]

Chang T C, He L, Fang T. MR image reconstruction from sparse radial samples using Bregman iteration[C]. Proceedings of the 13th Annual Meeting of ISMRM. Seattle, USA, 2006, 696.

[27]

Liu B, King K, Steckner M, et al. Regularized sensitivity encoding(SENSE)reconstruction using Bregman iterations [J]. Magnetic Resonance in Medicine, 2009, 61(1): 145-152.

[28]

Liu Q, Luo J, Wang S, et al. An augmented Lagrangian multi-scale dictionary learning algorithm [J]. EURASIP Journal on Advances in Signal Processing, 2011, 1: 1-16.

[29]

Du H, Lam F. Compressed sensing MR image reconstruction using a motion-compensated reference [J]. Magnetic Resonance Imaging, 2012, 30(7): 954-963.

[30]

Chen Y, Hager W, Huang F, et al. Fast algorithms for image reconstruction with application to partially parallel MR imaging [J]. SIAM Journal on Imaging Sciences, 2012, 5(1): 90-118.

[31]

Lin Q, Guo W, Fu X, et al. MR image reconstruction by patch-based sparse representation [J]. Journal of Theoretical and Applied Information Technology, 2013, 49(1): 107-112.

[32]

American Radiology Services. [EB/OL]. Available: http://www3. americanradiology. com/pls/web1/wwmain. home. 2013.

[33]

Ning B, Qu X, Guo D, et al. Magnetic resonance image reconstruction using trained geometric directions in 2D redundant wavelets domain and non-convex optimization [J]. Magnetic Resonance Imaging, 2013, 31(9): 1611-1622.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/