Aircraft landing gear control with multi-objective optimization using generalized cell mapping

Jianqiao Sun , Teng Jia , Furui Xiong , Zhichang Qin , Weiguo Wu , Qian Ding

Transactions of Tianjin University ›› 2015, Vol. 21 ›› Issue (2) : 140 -146.

PDF
Transactions of Tianjin University ›› 2015, Vol. 21 ›› Issue (2) : 140 -146. DOI: 10.1007/s12209-015-2584-8
Article

Aircraft landing gear control with multi-objective optimization using generalized cell mapping

Author information +
History +
PDF

Abstract

This paper presents a numerical algorithm tuning aircraft landing gear control system with three objectives, including reducing relative vibration, reducing hydraulic strut force and controlling energy consumption. Sliding mode control is applied to the vibration control of a simplified landing gear model with uncertainty. A two-stage generalized cell mapping algorithm is applied to search the Pareto set with gradient-free scheme. Drop test simulations over uneven runway show that the vibration and force interaction can be considerably reduced, and the Pareto optimum form a tight range in time domain.

Keywords

landing gear / sliding mode control / model uncertainty / multi-objective optimization / generalized cell mapping

Cite this article

Download citation ▾
Jianqiao Sun, Teng Jia, Furui Xiong, Zhichang Qin, Weiguo Wu, Qian Ding. Aircraft landing gear control with multi-objective optimization using generalized cell mapping. Transactions of Tianjin University, 2015, 21(2): 140-146 DOI:10.1007/s12209-015-2584-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pritchard J. Overview of landing gear dynamics[J]. Journal of Aircraft, 2001, 38(1): 130-137.

[2]

McGehee J R, Carden H D. A Mathematical Model of an Active Control Landing Gear for Load Control During Impact and Roll-Out[R], 1976, USA: NASA.

[3]

Vu K. Advances in Optimal Active Control Techniques for Aerospace Systems: Application to Aircraft Active Landing Gear[D], 1989, Los Angeles, USA: University of California.

[4]

Wang H T, Xing J T, Price W G, et al. An investigation of an active landing gear system to reduce aircraft vibrations caused by landing impacts and runway excitations[J]. Journal of Sound and Vibration, 2008, 317(1/2): 50-66.

[5]

Yao G Z, Yap F F, Chen G, et al. MR damper and its application for semi-active control of vehicle suspension system[J]. Mechatronics, 2002, 12(7): 963-973.

[6]

Gao H J, Lam J, Wang C H. Multi-objective control of vehicle active suspension systems via load-dependent controllers[J]. Journal of Sound and Vibration, 2006, 290(3–5): 654-675.

[7]

Sam Y M, Osman J H S, Ghani M R A. A class of proportional-integral sliding mode control with application to active suspension system[J]. Systems & Control Letters, 2004, 51(3/4): 217-223.

[8]

Goga V, Klucik M. Optimization of vehicle suspension parameters with use of evolutionary computation[J]. Procedia Engineering, 2012, 48: 174-179.

[9]

Brown M, Smith R E. Directed multi-objective optimization[J]. International Journal of Computers, Systems and Signal, 2005, 6(1): 3-17.

[10]

Maciejewski I. Control system design of active seat suspensions[J]. Journal of Sound and Vibration, 2012, 331(6): 1291-1309.

[11]

Hsu C S. Cell-to-Cell Mapping: A Method of Global Analysis for Nonlinear Systems[M], 1987, New York, USA: Springer-Verlag

[12]

Hernández C, Naranjani Y, Sardahi Y, et al. Simple cell mapping method for multi-objective optimal feedback control design[J]. International Journal of Dynamics and Control, 2013, 1(3): 231-238.

[13]

Hsu C S. A theory of cell-to-cell mapping dynamical systems[J]. Journal of Applied Mechanics, 1980, 47: 931-939.

[14]

Crespo L G, Sun J Q. Solution of fixed final state optimal control problems via simple cell mapping[J]. Nonlinear Dynamics, 2000, 23(4): 391-403.

[15]

Crespo L G, Sun J Q. Optimal control of target tracking with state constraints via cell mapping[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(5): 1029-1031.

[16]

Crespo L G, Sun J Q. Fixed final time optimal control via simple cell mapping[J]. Nonlinear Dynamics, 2003, 31(2): 119-131.

[17]

Liu H, Gu H B, Chen D W. Application of high-speed solenoid valve to the semi-active control of landing gear[J]. Chinese Journal of Aeronautics, 2008, 21(3): 232-240.

[18]

Horta L G, Daugherty R H, Martinson V J. Modeling and Validation of a Navy A6-Intruder Actively Controlled Landing Gear System[R], 1999, USA: NASA.

[19]

Pareto V. Manual of Political Economy[M], 1971, New York, USA: Augustus M Kelley.

[20]

Hillermeier C. Nonlinear Multiobjective Optimization: A Generalized Homotopy Approach[M], 2001, Berlin, Germany: Birkhauser

[21]

Naranjani Y, Hernández C, Xiong F R, et al. A hybrid algorithm for the simple cell mapping method in multiobjective optimization[C]. EVOLVE International Conference, 2013.

[22]

Hsu C S. A discrete method of optimal control based upon the cell state space concept[J]. Journal of Optimization Theory and Applications, 1985, 46(4): 547-569.

[23]

Xiong F R, Qin Z C, Xue Y, et al. Multi-objective optimal design of feedback controls for dynamical systems with hybrid simple cell mapping algorithm[J]. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(5): 1465-1473.

[24]

Kung H T, Luccio F, Preparata F P. On finding the maxima of a set of vectors[J]. Journal of the ACM, 1975, 22(4): 469-476.

AI Summary AI Mindmap
PDF

177

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/