Feasibility and structural feature on monotone second-order cone linear complementarity problems in Hilbert space

Xinhe Miao , Shengjuan Guo

Transactions of Tianjin University ›› 2015, Vol. 21 ›› Issue (4) : 377 -382.

PDF
Transactions of Tianjin University ›› 2015, Vol. 21 ›› Issue (4) : 377 -382. DOI: 10.1007/s12209-015-2531-8
Article

Feasibility and structural feature on monotone second-order cone linear complementarity problems in Hilbert space

Author information +
History +
PDF

Abstract

Given a real finite-dimensional or infinite-dimensional Hilbert space H with a Jordan product, the second-order cone linear complementarity problem(SOCLCP)is considered. Some conditions are investigated, for which the SOCLCP is feasible and solvable for any element qH. The solution set of a monotone SOCLCP is also characterized. It is shown that the second-order cone and Jordan product are interconnected.

Keywords

second-order cone linear complementarity / Jordan frame / Jordan product / Lorentz cone / adjoint operator

Cite this article

Download citation ▾
Xinhe Miao, Shengjuan Guo. Feasibility and structural feature on monotone second-order cone linear complementarity problems in Hilbert space. Transactions of Tianjin University, 2015, 21(4): 377-382 DOI:10.1007/s12209-015-2531-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Facchinei F, Pang J S. Finite-Dimensional Variational Inequalities and Complementarity Problems[M], 2003, New York, USA: Springer.

[2]

Chiang Y Y, Pan S H, Chen J S. A merit function method for infinite-dimensional SOCCPs[J]. Journal of Mathematical Analysis and Applications, 2011, 383(1): 159-178.

[3]

Gowda M S. On the extended linear complementarity problem[J]. Mathematical Programming, 1996, 72(1): 33-50.

[4]

Han J Y, Xiu N H, Qi H D. Theory and Algorithms of Nonlinear Complementarity Problems[M], 2006, Shanghai, China: Shanghai Scientific & Technical Publishers.

[5]

Lobo M S, Vandenberghe L, Boyd S, et al. Applications of second-order cone programming[J]. Linear Algebra and Its Applications, 1998, 284(1-3): 193-228.

[6]

Alizadeh F, Goldfarb D. Second-order cone programming[J]. Mathematical Programming, 2003, 95(1): 3-51.

[7]

Miao X H, Huang Z H. The column-sufficiency and rowsufficiency of the linear transformation on Hilbert spaces[J]. Journal of Global Optimization, 2011, 49(1): 109-123.

[8]

Miao X H, Chen J S. On the Lorentz cone complementarity problems in infinite-dimensional real Hilbert space[J]. Numerical Functional Analysis and Optimization, 2011, 32(5): 507-523.

[9]

Miao X H, Huang Z H. GUS-property for Lorentz cone linear complementarity problems on Hilbert spaces[J]. Science China Mathematics, 2011, 54(6): 1259-1268.

[10]

Kong L C, Xiu N H, Han J Y. The solution set structure of monotone linear complementarity problems over second-order cone[J]. Operations Research Letters, 2008, 36(1): 71-76.

[11]

Huang Z H. Sufficient conditions on nonemptiness and boundedness of the solution set of the P 0 function nonlinear complementarity problem[J]. Operations Research Letters, 2002, 30(3): 202-210.

[12]

Gowda M S, Sznajder R. Some global uniqueness and solvability results for linear complementarity problems over symmetric cones[J]. SIAM Journal on Optimization, 2007, 18(2): 461-481.

[13]

Miao X H, Huang Z H, Han J Y. Some ω-unique and ω-P properties for linear transformations on Hilbert spaces[J]. Acta Mathematicae Applicatae Sinica(English Series), 2010, 26(1): 23-32.

[14]

Faraut J, Koranyi A. Analysis on Symmetric Cones[M], 1994, New York, USA: Oxford University Press.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/