Neuro-space mapping for modeling heterojunction bipolar transistor

Shuxia Yan , Qianfu Cheng , Haifeng Wu , Qijun Zhang

Transactions of Tianjin University ›› 2015, Vol. 21 ›› Issue (1) : 90 -94.

PDF
Transactions of Tianjin University ›› 2015, Vol. 21 ›› Issue (1) : 90 -94. DOI: 10.1007/s12209-015-2493-x
Article

Neuro-space mapping for modeling heterojunction bipolar transistor

Author information +
History +
PDF

Abstract

A neuro-space mapping (Neuro-SM) for modeling heterojunction bipolar transistor (HBT) is presented, which can automatically modify the input signals of the given model by neural network. The novel Neuro-SM formulations for DC and small-signal simulation are proposed to obtain the mapping network. Simulation results show that the errors between Neuro-SM models and the accurate data are less than 1%, demonstrating that the accurcy of the proposed method is higher than those of the existing models.

Keywords

heterojunction bipolar transistor (HBT) / nonlinear device modeling / neural network / neuro-space mapping / optimization

Cite this article

Download citation ▾
Shuxia Yan, Qianfu Cheng, Haifeng Wu, Qijun Zhang. Neuro-space mapping for modeling heterojunction bipolar transistor. Transactions of Tianjin University, 2015, 21(1): 90-94 DOI:10.1007/s12209-015-2493-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang Q J, Gupata K C. Neural Networks for RF and Microwave Design[M], 2000.

[2]

Zhang L, Xu J J, Yagoub M C E, et al. Neuro-space mapping technique for nonlinear device modeling and large-signal simulation[C]. 2003 IEEE International Microwave Symposium. Philadelphia, USA, 2003.

[3]

Kabir H, Zhang L, Yu M, et al. Smart modeling of microwave devices[J]. IEEE Microwave Magazine, 2010, 11(3): 105-118.

[4]

Bandler J W, Cheng Q S A, Dakroury S A, et al. Space mapping: The state of the art[J]. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(1): 337-361.

[5]

Koziel S, Ogurtsov S, Bandler J W, et al. Reliable space-mapping optimization integrated with EM-based adjoint sensitivities[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(10): 3493-3502.

[6]

Feng F, Zhang C, Gongal-Reddy V M R, et al. Parallel space mapping approach to EM optimization[J]. IEEE Transactions on Microwave Theory and Techniques, 2014, 62(5): 1135-1148.

[7]

Koziel S, Bandler J W, Cheng Q S. Reduced-cost microwave component modeling using space-mappingenhanced electromagnetic-based kriging surrogates[J]. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2013, 26(3): 275-286.

[8]

Zhang L, Xu J J, Yagoub M C E, et al. Efficient analytical formulation and sensitivity analysis of neuro-space mapping for nonlinear microwave device modeling[J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(9): 2752-2767.

[9]

Zhu L, Liu K H, Zhang Q J, et al. An enhanced analytical neuro-space mapping method for large-signal microwave device modeling[C]. 2012 IEEE International Microwave Symposium. Montreal, Canada, 2012.

[10]

Zhu L, Ma Y T, Zhang Q J, et al. An enhanced neuro-space mapping method for nonlinear microwave device modeling[ C]. 2012 IEEE International Symposium on Circuits and Systems. Seoul, Repubic of Korea, 2012.

[11]

Gorissen D, Zhang L, Zhang Q J, et al. Evolutionary neurospace mapping technique for modeling of nonlinear microwave devices[J]. IEEE Transactions on Microwave Theory and Techniques, 2011, 59(2): 213-229.

[12]

Zhang L, Zhang Q J, Wood J. Statistical neuro-space mapping technique for large-signal modeling of nonlinear devices[J]. IEEE Transactions on Microwave Theory and Techniques, 2008, 56(11): 2453-2467.

[13]

Rudolph M. Compact HBT modeling: Status and challenges[C]. 2010 IEEE International Microwave Symposium. Anaheim, USA, 2010.

[14]

Rudolph M, Doerner R. Consistent modeling of capacitances and transit times of GaAs-based HBTs[J]. IEEE Transactions on Electron Devices, 2005, 52(9): 1969-1975.

[15]

Xu J J, Yagoub M C E, Ding R T, et al. Exact adjoint sensitivity for neural based microwave modeling and design[C]. 2001 IEEE International Microwave Symposium. Phoenix, USA, 2001.

AI Summary AI Mindmap
PDF

158

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/