Zirconium diboride powders synthesized by boro/carbothermal reaction using sol-gel technology

Huiming Ji , Hongna Fan , Hongjun Feng , Xiaohong Sun

Transactions of Tianjin University ›› 2015, Vol. 21 ›› Issue (3) : 228 -233.

PDF
Transactions of Tianjin University ›› 2015, Vol. 21 ›› Issue (3) : 228 -233. DOI: 10.1007/s12209-015-2474-0
Article

Zirconium diboride powders synthesized by boro/carbothermal reaction using sol-gel technology

Author information +
History +
PDF

Abstract

A single phase of zirconium diboride(ZrB2)powder was successfully synthesized by sol-gel method in Zr-B-C-O system, using zirconium oxychloride(ZrOCl2·8H2O), nano-scale boron and sucrose(C12H22O11)as the starting materials and propylene oxide(PO)as complexing agent at a low temperature. Simultaneously, the experimental and theoretical studies of ZrB2 synthesized by boro/carbothermal reduction from novel sol-gel technology were discussed. The results indicated that the pure rod-like ZrB2 powder without residual ZrO2 phase could be obtained with a B/Zr molar ratio of 3.5 at 1 400°C in argon atmosphere. Besides, in this study, a kinetic model for the Zr-B-C-O system producing ZrB2 by boro/carbothermal reaction was established based on thermodynamic analysis. It was also observed that, with the increase of reaction temperature, the reaction which produced ZrB2 powders changed from the borothermal reaction to boro/carbothermal reaction in the Zr-B-C-O system.

Keywords

zirconium diboride / boro/carbothermal reaction / kinetic model / sol-gel method

Cite this article

Download citation ▾
Huiming Ji, Hongna Fan, Hongjun Feng, Xiaohong Sun. Zirconium diboride powders synthesized by boro/carbothermal reaction using sol-gel technology. Transactions of Tianjin University, 2015, 21(3): 228-233 DOI:10.1007/s12209-015-2474-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Upadhya K, Yang J M, Hoffman W P. Materials for ultrahigh temperature structural applications[J]. Journal of the American Ceramic Society Bulletin, 1997, 76(12): 51-56.

[2]

Zhang G J, Yan Y J, Huang Z R, et al. Pressureless sintering of ZrB2-SiC ceramics: The effect of B4C content[J]. Scripta Materialia, 2009, 60(7): 559-562.

[3]

Yang L J, Zhu S Z, Xu Q. Synthesis of ultrafine ZrB2 powders by sol-gel process[J]. Frontiers of Materials Science in China, 2010, 4(3): 285-290.

[4]

Zhang Y, Li R X, Jiang Y S, et al. Morphology evolution of ZrB2 nanoparticles synthesized by sol-gel method[J]. Journal of Solid State Chemistry, 2011, 184(8): 2047-2052.

[5]

Williams P A, Ridawn S, Perpeako J H, et al. Oxidation of ZrB2-SiC ultra-high temperature composites over a wide range of SiC content[J]. Journal of the European Ceramic Society, 2012, 32(14): 3875-3883.

[6]

Watts J, Hilmas G, Fahrenholtz W G. Mechanical characterization of ZrB2-SiC composites with varying SiC particle sizes[J]. Journal of the American Ceramic Society, 2011, 94(12): 4410-4418.

[7]

Walker L S, Pinc W R, Corral E L. Powder processing effects on the rapid low-temperature densification of ZrB2-SiC ultra-high temperature ceramic composites using spark plasma sintering[J]. Journal of the American Ceramic Society, 2012, 95(1): 194-203.

[8]

Guo S Q. Densification of ZrB2-based composites and their mechanical and physical properties: A review[J]. Journal of the European Ceramic Society, 2009, 29(6): 995-1011.

[9]

Monteverde F, Bellosi A, Guicciardi S. Processing and properties of zirconium deboride-based composites[J]. Journal of the European Ceramic Society, 2002, 22(3): 279-288.

[10]

Andeievskii R A. Preparation and some properties of ultrafine zirconium boride and titanium boride powders[J]. Inorganic Material, 1995, 31(8): 965-968.

[11]

Camurlu H E, Maglia F. Preparation of nano-size ZrB2 powder by self-propagating high-temperature synthesis[J]. Journal of the European Ceramic Society, 2009, 29(8): 1501-1506.

[12]

Galan C A, Ortiz A L, Guiberteau F, et al. High-energy ball milling of ZrB2 in the presence of graphite[J]. Journal of the American Ceramic Society, 2010, 93(10): 3072-3075.

[13]

Millet P, Hwang T. Preparation of TiB2 and ZrB2: Influence of a mechano-chemical treatment on the borothermic reduction of titania and zirconia[J]. Journal of Materials Science, 1996, 31(2): 351-355.

[14]

Devyatkin S V. Electrosynthesis of zirconium boride from cryolite-alumina melts containing zirconium and boron oxides[J]. Russian Journal of Electrochemistry, 2001, 37(12): 1499-1502.

[15]

Sun G, Wang H, Wang W M. Synthesis of ultra-fine ZrB2 powder by borothermal reaction under high heating rate[J]. Advanced Materials Research, 2009, 66: 77-80.

[16]

Yan Y J, Huang Z R, Dong S M, et al. New route to synthesize ultra-fine zirconium diboride powders using inorganic-organic hybrid precursors[J]. Journal of the American Ceramic Society, 2006, 89(11): 3585-3588.

[17]

Ran S L, Biest O V, Vleugels J. ZrB2 powders synthesis by borothermal reduction[J]. Journal of the American Ceramic Society, 2010, 93(6): 1586-1590.

[18]

Qiu H Y, Guo W M, Zou J, et al. ZrB2 powders prepared by boro/carbothermal reduction of ZrO2: The effects of carbon source and reaction atmosphere[J]. Powder Technology, 2012, 217: 462-466.

[19]

Zhang G J, Ni D W, Kan Y M. Ultrahigh temperature ceramics(UHTCs)based on ZrB2 and HfB2 systems: Powder synthesis, densification and mechanical properties[J]. Journal of Physics: Conference Series, 2009, 176(1): 1-12.

[20]

Fahrenholtz W G. The ZrB2 volatility diagram[J]. Journal of the American Ceramic Society, 2005, 88(12): 3509-3512.

[21]

Xie Y L, Thomas H, Sanders J R, et al. Solution-based synthesis of submicrometer ZrB2 and ZrB2-TaB2[J]. Journal of the American Ceramic Society, 2008, 91(5): 1469-1474.

AI Summary AI Mindmap
PDF

174

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/