Helical configurations of elastic rods in the presence of interfacial traction

Yongzhao Wang , Qichang Zhang , Wei Wang , Jianxin Han

Transactions of Tianjin University ›› 2015, Vol. 21 ›› Issue (3) : 223 -227.

PDF
Transactions of Tianjin University ›› 2015, Vol. 21 ›› Issue (3) : 223 -227. DOI: 10.1007/s12209-015-2468-y
Article

Helical configurations of elastic rods in the presence of interfacial traction

Author information +
History +
PDF

Abstract

The Kirchhoff thin elastic rod models are always the important basis to explore the configuration mechanism of the flexible structures in both the macroscopic and microscopic scale. As a continuum model of DNA, a thin elastic rod subjected to interfacial interactions is used to investigate the helical equilibrium configuration of DNA in salt solution. In this paper, the Kirchhoff’s equations in the presence of interfacial traction and the free energy density functions of different configurations are studied. The transition formula of the free energy between B-DNA and ZDNA is obtained, and the results show that the free energy of the transition is mainly determined by the salt concentration, which agrees well with the experimental data.

Keywords

interfacial energy / static Kirchhoff’s equations / helical configuration / ionic concentration / B-DNA to ZDNA transition

Cite this article

Download citation ▾
Yongzhao Wang, Qichang Zhang, Wei Wang, Jianxin Han. Helical configurations of elastic rods in the presence of interfacial traction. Transactions of Tianjin University, 2015, 21(3): 223-227 DOI:10.1007/s12209-015-2468-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Branden C, Tooze J. Introduction to Protein Structure[M], 1991, New York, USA: Garland Pub.

[2]

Nelson D L, Lehninger A L, Cox Michael M. Lehninger Principles of Biochemistry[M], 2008, New York, USA: Macmillan Pub.

[3]

Zhang Q C, Zhao B, Wang W. Topological configuration of Kirchhoff thin elastic ring rod with asymmetric cross section[J]. Journal of Tianjin University(Science and Technology), 2013, 46(12): 1089-1094.

[4]

Xue Y, Liu Y Z. Stability of a straight Kirchhoff elastic rod under the force screws[J]. Acta Physica Sinica, 2009, 58(10): 6737-6442.

[5]

Zhou X H. Some notes on low-dimensional elastic theories of bio- and nano-structures[J]. Modern Physics Letters B, 2010, 24(23): 2403-2412.

[6]

Schleif R. DNA loop[J]. Annual Review of Biochemistry, 1992, 6(1): 199-223.

[7]

Möbius W, Neher R A, Gerland U. Kinetic accessibility of buried DNA sites in nucleosomes[J]. Physical Review Letter, 2006, 97(20): 208102

[8]

Benham C J, Mielke S P. DNA mechanics[J]. Annual Review of Biomedical Engineer, 2005, 7(1): 21-53.

[9]

Huang Z X. Modulating DNA configuration by interfacial traction: An elastic rod model to characterize DNA folding and unfolding[J]. Journal of Biological Physics, 2011, 37(1): 79-90.

[10]

Wang Y Z, Zhang Q C, Wang W. Comment on “Modulating DNA configuration by interfacial traction: An elastic rod model to characterize DNA folding and unfolding”[J]. Journal of Biological Physics, 2014, 40(3): 259-266.

[11]

Xiao Y, Huang Z X, Wang S N. An elastic rod model to evaluate effects of ionic concentration on equilibrium configuration of DNA in salt solution[J]. Journal of Biological Physics, 2014, 40(2): 179-192.

[12]

Barros M, Ferrández A. A conformal variational approach for helices in nature[J]. Journal of Mathematical Physics, 2009, 50(10): 103529

[13]

Yavari M. B to Z-DNA transition probed by Feoli’s formalism for a Kirchhoff model[J]. International Journal of Modern Physics B, 2013, 27(23): 1350121

[14]

Dans P D, Pérez A, Faustino I, et al. Exploring polymorphisms in B-DNA helical conformations[J]. Nucleic Acids Research, 2012, 40(21): 10668-10678.

[15]

Bothe J R, Lowenhaupt K. Sequence-specific B-DNA flexibility modulates Z-DNA formation[J]. Journal of the American Chemical Society, 2011, 133(7): 2016-2018.

[16]

Liu Y Z. Nonlinear Mechanics-Thin Elastic Rod Theoretical Basis of Mechanical Model of DNA[M], 2006, Beijing, China: Tsinghua University Press.

[17]

Argeri M, Barone V, De Lillo S, et al. Elastic rods in life- and material-sciences: A general integrable model[J]. Physica D, 2009, 238(13): 1031-1049.

[18]

Pohl F M, Jovin T M. Salt-induced co-operative conformational change of a synthetic DNA: Equilibrium and kinetic studies with poly(dG-dC)[J]. Journal of Molecular Biology, 1972, 67(3): 375-396.

[19]

Neidle S. Principles of Nucleic Acid Structure[M], 2008, New York, USA: Academic Press.

[20]

Jovin T M, Soumpasis D M, McIntosh L P. The transition between B-DNA and Z-DNA[J]. Annual Review of Physical Chemistry, 1987, 38(1): 521-558.

[21]

Baumann C G, Smith S B, Bloomfield V A, et al. Ionic effects on the elasticity of single DNA molecules[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(12): 6185-6190.

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/