Robust adaptive control design for rotorcraft unmanned aerial vehicles based on sliding mode approach

Jianchuan Guo , Bin Xian

Transactions of Tianjin University ›› 2014, Vol. 20 ›› Issue (6) : 393 -401.

PDF
Transactions of Tianjin University ›› 2014, Vol. 20 ›› Issue (6) : 393 -401. DOI: 10.1007/s12209-014-2423-3
Article

Robust adaptive control design for rotorcraft unmanned aerial vehicles based on sliding mode approach

Author information +
History +
PDF

Abstract

This paper presents a nonlinear robust control design method for a generic rotorcraft unmanned aerial vehicle (RUAV). The control objective is to let the RUAV track some pre-defined time-varying position and heading trajectories. The proposed controller employs feedback linearization process to realize the dynamic decoupling control and applies adaptive sliding mode control to compensate for the parametric uncertainties and external disturbances. The global asymptotical stability is proved via stability analysis. Compared with the cascaded controller, the proposed controller demonstrates a superior tracking performance and robustness through numerical simulation in the presence of parametric uncertainties and unknown disturbances.

Keywords

rotorcraft unmanned aerial vehicle (RUAV) / nonlinear robust control / sliding mode control / parametric uncertainty / wind gust disturbance

Cite this article

Download citation ▾
Jianchuan Guo, Bin Xian. Robust adaptive control design for rotorcraft unmanned aerial vehicles based on sliding mode approach. Transactions of Tianjin University, 2014, 20(6): 393-401 DOI:10.1007/s12209-014-2423-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kendoul F. Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems [J]. Journal of Field Robotics, 2012, 29(2): 315-378.

[2]

Kim H J, Shim D H. A flight control system for aerial robots: Algorithms and experiments [J]. Control Engineering Practice, 2003, 11(12): 1389-1400.

[3]

Gavrilets V. Autonomous Aerobatic Maneuvering of Miniature Helicopters [D]. 2003, Boston, USA: MIT.

[4]

La Civita M, Papageorgiou G, Messner W C, et al. Design and flight testing of an H controller for a robotic helicopter [J]. Journal of Guidance, Control, and Dynamics, 2006, 29(2): 485-494.

[5]

Takahashi M D, Schulein G, Whallay M. Flight control law design and development for an autonomous rotorcraft [C]. The 64th American Helicopter Society International Annual Forum. Montreal, Canada, 2008

[6]

Koo T J, Sastry S. Output tracking control design of a helicopter model based on approximate linearization [C]. Proceedings of the 37th IEEE Conference on Decision and Control. Tampa, USA, 1998

[7]

Raptis I A, Valavanis K P, Moreno W A. A novel nonlinear backstepping controller design for helicopters using the rotation matrix [J]. IEEE Transactions on Control Systems Technology, 2011, 19(2): 465-473.

[8]

Ahmed B, Pota H R. Flight control of a rotary wing UAV using adaptive backstepping [C]. Proceedings of the IEEE International Conference on Control and Automation. Christchurch, New Zealand, 2009

[9]

Cheviron T, Plestan F, Chriette A. A robust guidance and control scheme of an autonomous scale helicopter in presence of wind gusts [J]. International Journal of Control, 2009, 82(12): 2206-2220.

[10]

Leonard F, Martini A, Abba G. Robust nonlinear controls of model-scale helicopters under lateral and vertical wind gusts [J]. IEEE Transactions on Control Systems Technology, 2012, 20(1): 154-163.

[11]

Sanchez E N, Becerra H M, Velez C M. Combining fuzzy, PID and regulation control for an autonomous mini-helicopter [J]. Information Sciences, 2007, 177(10): 1999-2022.

[12]

Ge S S, Ren B, Tee K P, et al. Approximation-based control of uncertain helicopter dynamics [J]. IET Control Theory and Applications, 2009, 3(7): 941-956.

[13]

Khalil H K. Nonlinear Systems [M]. 2002, USA: Prentice Hall.

[14]

Xu H J, Mirmirani M D, Ioannou P A. Adaptive sliding mode control design for a hypersonic flight vehicle [J]. Journal of Guidance, Control, and Dynamics, 2004, 27(5): 829-838.

[15]

Xu R, Ozguner U. Sliding mode control of a class of underactuated systems [J]. Automatica, 2008, 44(1): 233-241.

[16]

Ifassiouen H, Guisser M, Medromi H. Robust nonlinear control of a miniature autonomous helicopter using sliding mode control structure [J]. International Journal of Applied Mathematics and Computer Science, 2007, 4(1): 31-36.

[17]

Cai G W, Chen B M, Lee T H, et al. Comprehensive nonlinear modeling of a miniature unmanned helicopter [J]. Journal of the American Helicopter Society, 2012, 57(1): 1-13.

[18]

Martini A, Leonard F, Abba G. Dynamic modelling and stability analysis of model-scale helicopters under wind gust [J]. Journal of Intelligent Robotic Systems, 2009, 54(4): 647-686.

[19]

Isidori A, Marconi L, Serrani A. Robust nonlinear motion control of a helicopter [J]. IEEE Transactions on Automatic Control, 2003, 48(3): 413-426.

[20]

Fantoni I, Lozano R. Nonlinear Control for Underactuated Mechanical Systems [M]. 2002, UK: Springer-Verlag.

[21]

Slotine J E, Li W P. Applied Nonlinear Control [M]. 1991, USA: Prentice Hall.

[22]

Bergerman M, Amidi O, Miller J R, et al. Cascaded position and heading control of a robotic helicopter [C]. Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego, USA, 2007

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/