Self-organizing evolution of anodized oxide films on Ti-25Nb-3Mo-2Sn-3Zr alloy and hydrophilicity

Fang He , Lijun Li , Lixia Chen , Fengjiao Li , Yuan Huang

Transactions of Tianjin University ›› 2014, Vol. 20 ›› Issue (2) : 97 -102.

PDF
Transactions of Tianjin University ›› 2014, Vol. 20 ›› Issue (2) : 97 -102. DOI: 10.1007/s12209-014-2259-x
Article

Self-organizing evolution of anodized oxide films on Ti-25Nb-3Mo-2Sn-3Zr alloy and hydrophilicity

Author information +
History +
PDF

Abstract

In the present work, hierarchical nanostructured titanium dioxide (TiO2) films were fabricated on Ti-25Nb-3Mo-2Sn-3Zr (TLM) alloy for biomedical applications via one-step anodization process in ethylene glycolbased electrolyte containing 0.5wt% NH4F. The nanostructured TiO2 films exhibited three distinct types depending on the anodization time: top irregular nanopores (INP)/beneath regular nanopores (RNP), top INP/middle regular nanotubes (RNT)/bottom RNP and top RNT with underlying RNP. The evolution of the nanostructured TiO2 films with anodization time demonstrated that self-organizing nanopores formed at the very beginning and individual nanotubes originated from underlying nanopore dissolution. Furthermore, a mod`ified two-stage self-organizing mechanism was introduced to illustrate the growth of the nanostructured TiO2 films. Compared with TLM titanium alloy matrix, the TiO2 films with special nano-structure hold better hydrophilicity and higher specific surface area, which lays the foundation for their biomedical applications.

Keywords

Ti-25Nb-3Mo-2Sn-3Zr alloy / hierarchical nanostructured oxide layers / anodization / hydrophilicity

Cite this article

Download citation ▾
Fang He, Lijun Li, Lixia Chen, Fengjiao Li, Yuan Huang. Self-organizing evolution of anodized oxide films on Ti-25Nb-3Mo-2Sn-3Zr alloy and hydrophilicity. Transactions of Tianjin University, 2014, 20(2): 97-102 DOI:10.1007/s12209-014-2259-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Woo L, Roland S, Ulrich Gosele. A continuous process for structurally well-defined Al2O3 nanotubes based on pulse anodization of aluminum[J]. Nano Letters, 2008, 8(8): 2155-2160.

[2]

Andrei G, Patrik Schmuki. Self-ordering electrochemistry: A review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures [J]. Chem Commun, 2009, 20, 2791-2808.

[3]

Steffen B, Florian J, Patrik Schmuki. Formation of hexagonally ordered nanoporous anodic zirconia[ J]. Electrochemical Communications, 2008, 10(12): 1916-1919.

[4]

Bao S, Li C, Zang J, et al. New nanostructured TiO2 for direct electrochemistry and glucose sensor applications [J]. Advanced Functional Materials, 2008, 18(4): 591-599.

[5]

Zhang G, Huang H, Zhang Y, et al. Highly ordered nanoporous TiO2 and its photocatalytic properties [J]. Electrochemistry Communications, 2007, 9(12): 2854-2858.

[6]

Zhu K, Vinzant T B, Neale N R, et al. Removing structural disorder from oriented TiO2 nanotube arrays: Reducing the dimensionality of transport and recombination in dye-sensitized solar cells [J]. Nano Letters, 2007, 7(12): 3739-3746.

[7]

Popat K C, Leoni L, Grimes C A, et al. Influence of engineered titania nanotubular surfaces on bone cells [J]. Biomaterials, 2007, 28(21): 3188-3197.

[8]

Peng L, Mendelsohn A D, Latempa T J, et al. Long-term small molecule and protein elution from TiO2 nanotubes[ J]. Nano Letters, 2009, 9(5): 1932-1936.

[9]

Zwilling V, Aucouturier M, Darque-Ceretti E. Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach [J]. Electrochimica Acta, 1999, 45(6): 921-929.

[10]

Zwilling V, Darque-Ceretti E, Boutry-Forveille A, et al. Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy [J]. Surface and Interface Analysis, 1999, 27(7): 629-637.

[11]

Ghicov A, Aldabergenova S, Tsuchyia H, et al. TiO2-Nb2O5 nanotubes with electrochemically tunable morphologies [J]. Angewandte Chemie-International Edition, 2006, 45(42): 6993-6996.

[12]

Kouji Y, Patrik Schmuki. Electrochemical formation of self-organized zirconium titanate nanotube multilayers [J]. Electrochemistry Communications, 2007, 9(4): 615-619.

[13]

Saji V S, Cheol C H, Brantley W A. An electrochemical study on self-ordered nanoporous and nanotubular oxide on Ti-35Nb-5Ta-7Zr alloy for biomedical applications [J]. Acta Biomaterialia, 2009, 5(6): 2303-2310.

[14]

Yan J, Zhou Feng. TiO2 nanotubes: Structure optimization for solar cells [J]. Journal of Materials Chemistry, 2011, 21(26): 9406-9418.

[15]

Poulomi R, Steffen B, Patrik Schmuki. TiO2 nanotubes: Synthesis and applications [J]. Angewandte Chemie-International Edition, 2011, 50(13): 2904-2939.

[16]

Steffen B, Hiroaki T, Patrik Schmuki. Transition from nanopores to nanotubes: Self-ordered anodic oxide structures on titanium-aluminides [J]. Journal of Materials Chemistry, 2008, 20(10): 3245-3247.

[17]

Wei W, Steffen B, Nabeen S, et al. Ideal hexagonal order: Formation of self-organized anodic oxide nanotubes and nanopores on a Ti-35Ta alloy [J]. Journal of the Electrochemical Society, 2010, 157(12): 1184-1186.

[18]

Steffen B, Florian J, Patrik Schmuki. Selfordered hexagonal nanoporous hafnium oxide and transition to aligned HfO2 nanotube layers [J]. Electrochemical and Solid-State Letters, 2009, 12(7): K45-K48.

[19]

Yu Z, Zhou Lian. Influence of martensitic transformation on mechanical compatibility of biomedical β type titanium alloy TLM [J]. Materials Science and Engineering A, 2006, 438–440, 391-394.

[20]

Yu Z, Wang G, Ma X, et al. Shape memory characteristics of a near β titanium alloy [J]. Materials Science and Engineering A, 2009, 513/514, 233-238.

[21]

Damon K, Wang G, Yu Z, et al. Pseudoelastic behaviour of a β Ti-25Nb-3Zr-3Mo-2Sn alloy [J]. Materials Science and Engineering A, 2010, 527(9): 2246-2252.

[22]

Loya M C, Park E, Chen L H, et al. Radially arrayed nanopillar formation on metallic stent wire surface via radiofrequency plasma [J]. Acta Biomaterialia, 2010, 6(4): 1671-1677.

[23]

Puckett S D, Taylor E, Raimondo T, et al. The relationship between the nanostructure of titanium surfaces and bacterial attachment [J]. Biomaterials, 2010, 31(4): 706-713.

[24]

Song Y, Schmidt-Stein F, Bauer S, et al. Amphiphilic TiO2 nanotube arrays: An actively controllable drug delivery system [J]. Journal of the American Chemical Society, 2009, 131(12): 4230-4232.

[25]

Liang Y, Cui Z, Zhu S, et al. Characterization of self-organized TiO2 nanotubes on Ti-4Zr-22Nb-2Sn alloys and the application in drug delivery system [J]. Journal of Materials Science-Medicine, 2011, 22(3): 461-467.

[26]

Sun C, Luo J, Wu L, et al. Self-ordered anodic alumina with continuously tunable pore intervals from 410 to 530 nm [J]. ACS: Applied Materials Interfaces, 2010, 2(5): 1299-1302.

[27]

Wang D, Yu B, Wang C, et al. A novel protocol towards perfect alignment of anodized TiO2 nanotubes [J]. Advanced Materials, 2009, 21(9): 1964-1967.

[28]

Crawford Grant A, Nikhilesh C. Porous hierarchical TiO2 nanostructures: Processing and microstructure relationships [J]. Acta Materials, 2009, 57(3): 854-867.

[29]

Wang D, Liu Y, Yu B, et al. TiO2 nanotubes with tunable morphology, diameter, and length: Synthesis and photo-electrical/catalytic performance[J]. Chemistry of Materials, 2009, 21(7): 1198-1206.

[30]

Chu C, Wang R, Yin L, et al. Effects of anodic oxidation in H2SO4 electrolyte on the biocompatibility of NiTi shape memory alloy[J]. Materials Letters, 2008, 62(20): 3512-3514.

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/