High gain directional antenna array for WiMAX application

Xiaoli Zhao , Jie Jin

Transactions of Tianjin University ›› 2014, Vol. 20 ›› Issue (5) : 364 -367.

PDF
Transactions of Tianjin University ›› 2014, Vol. 20 ›› Issue (5) : 364 -367. DOI: 10.1007/s12209-014-2255-1
Article

High gain directional antenna array for WiMAX application

Author information +
History +
PDF

Abstract

A 16×16 micro-strip antenna array with high gain characteristic was proposed for the 5.5 GHz WiMAX application. The T-junctions with a power ratio of 2:1 were used to design the feed network. To correct the stepped discontinuity of impedance change in common multi-section impedance transformer, exponential line matching transformers were adopted in the WiMAX frequency band. The reflection coefficient was lower than −15 dB from 5.08 GHz to 5.87 GHz. The measured gain of the antenna array achieved 29.8 dBi on E-plane at 5.8 GHz.

Keywords

antenna array / high gain / WiMAX

Cite this article

Download citation ▾
Xiaoli Zhao, Jie Jin. High gain directional antenna array for WiMAX application. Transactions of Tianjin University, 2014, 20(5): 364-367 DOI:10.1007/s12209-014-2255-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Huang Y. WiMAX dynamic beamforming antenna[J]. IEEE Aerospace and Electronic Systems Magazine, 2008, 23(8): 26-31.

[2]

Garcia Zuazola I J, Batchelor J C, Elmirghani J M H. Sectorised WiMAX antenna for future vehicular communications systems[J]. IET Microwaves, Antennas and Propagation, 2010, 4(2): 210-218.

[3]

Charaabi Z, Testard M. Optimized WiMAX MIMO antenna for base station applications with polarization and spatial diversity[J]. Bell Labs Technical Journal, 2011, 16(1): 217-234.

[4]

Jiang W, Che W. A novel UWB antenna with dual notched bands for WiMAX and WLAN applications[J]. IEEE Antennas and Wireless Propagation Letters, 2012, 11, 293-296.

[5]

Deruyck M, Tanghe E, Joseph W, et al. Model for power consumption of wireless access networks[J]. IET Science, Measurement and Technology, 2011, 5(4): 155-161.

[6]

Chen H D, Sim C Y D, Wu J Y, et al. Broadband high-gain microstrip array antennas for WiMAX base station[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(8): 3977-3980.

[7]

Joubert J, Odendaal J W, Prinsloo J. High-gain dualpolarised planar slot array for WLAN applications[J]. Electronics Letters, 2010, 46(15): 1048-1050.

[8]

Toh W K, Qing X, Chen Z N. A planar dualband antenna array[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(3): 833-838.

[9]

Caso R, Serra A A, Rodriguez-Pino M, et al. A wideband slot-coupled stacked-patch array for wireless communications[J]. IEEE Antennas and Wireless Propagation Letters, 2010, 9, 986-989.

[10]

Sun D, Dou W, You L. Application of novel cavity-backed proximity-coupled microstrip patch antenna to design broadband conformal phased array[J]. IEEE Antennas and Wireless Propagation Letters, 2010, 9, 1010-1013.

[11]

Li J. An omnidirectional microstrip antenna for WiMAX applications[J]. IEEE Antennas and Wireless Propagation Letters, 2011, 10, 167-169.

[12]

Wang H, Huang X B, Fang D G, et al. A microstrip antenna array formed by microstrip line fed tooth-like-slot patches[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(4): 1210-1214.

[13]

Li B, Yin Y Z, Hu W, et al. Wideband dual-polarized patch antenna with low cross polarization and high isolation[J]. IEEE Antennas and Wireless Propagation Letters, 2012, 11, 427-430.

[14]

Zheng C, Li T. Development of an exponential tapered impedance transformer for UHF-PD sensor[C]. International Conference on Electric Power Equipment-Switching Technology, 2011

[15]

Hammerstad E, Jensen O. Accurate models for microstrip computer-aided design[C]. IEEE MTT-S International Microwave Symposium Digest, 1980

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/