Correlation between process parameters and primary dendrite arm spacing in laser welding of Cu and Al

Zhiqing Xue , Shengsun Hu , Di Zuo , Junqi Shen

Transactions of Tianjin University ›› 2014, Vol. 20 ›› Issue (5) : 315 -321.

PDF
Transactions of Tianjin University ›› 2014, Vol. 20 ›› Issue (5) : 315 -321. DOI: 10.1007/s12209-014-2245-3
Article

Correlation between process parameters and primary dendrite arm spacing in laser welding of Cu and Al

Author information +
History +
PDF

Abstract

A combined numerical model of thermal field and the primary dendrite arm spacing (PDAS) was proposed to correlate the process parameters and PDAS in laser welding of Cu and Al. The solidification parameters simulated by the finite volume method with commercial software ANASYS FLUENT were applied in the PDAS model to predict the dendrite arm spacing of fusion zone. Dendrite was also examined by the metallographic method to validate the model. Results indicate that the calculated PDAS agrees with metallographic measurements reasonably, especially the Hunt model. PDAS increases apparently with increasing laser power while decreases slightly with increasing welding speed. Increasing laser power increases the secondary dendrite and increasing welding speed increases the microporosity in dendrite.

Keywords

laser welding / aluminum / copper / modeling / primary dendrite arm spacing

Cite this article

Download citation ▾
Zhiqing Xue, Shengsun Hu, Di Zuo, Junqi Shen. Correlation between process parameters and primary dendrite arm spacing in laser welding of Cu and Al. Transactions of Tianjin University, 2014, 20(5): 315-321 DOI:10.1007/s12209-014-2245-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Melo M L N M, Rizzo E M S, Santo R G. Predicting dendrite arm spacing and their effect on microporosity formation in directionally solidified Al-Cu alloy[J]. Journal of Materials Science, 2005 1599-1609.

[2]

Balu P, Carlson B, Kovacevic R. An investigation into the laser micro-welding of aluminum and copper in lap joint configuration[C]. TMS Annual Meeting, 2011, 3, 295-307.

[3]

Zhan X H, Dong Z B, Wei Y H, et al. Stochastic modeling of columnar dendritic grain growth in weld pool of Al-Cu alloy[J]. Crystal Research and Technology, 2008, 44(4): 414-420.

[4]

Farzadi A, Do-Quang M, Serajzadeh S, et al. Phase-field simulation of weld solidification microstructure in an Al-Cu alloy [J]. Modelling and Simulation in Materials Science and Engineering, 2008, 16(6): 065005-065022.

[5]

Jackson K A, Hunt J D. Lamellar and rod eutectic growth[J]. Transactions of the Metallurgical Society of AIME, 1966, 236, 1129-1142.

[6]

Hunt J D. Solidification and Casting of Metals[M]. 1979, London: The Society of Metals.

[7]

Kurz W, Fisher D J. Fundamentals of Solidification[M]. 1998, 4th ed., Switzerland: Transaction Technology Publications.

[8]

Trivedi R. Interdendritic spacing(II): A comparison of theory and experiment[J]. Metallurgical Transactions A, 1984, 15(6): 977-982.

[9]

An G, Liu L X. Dendrite spacing in unidirectionally solidified Al-Cu alloy[J]. Journal of Crystal Growth, 1987, 80(2): 383-392.

[10]

McCartney D G, Hunt J D. Measurements of cell and primary dendrite arm spacings in directionally solidified aluminium alloys [J]. Acta Metallurgica, 1981, 29(11): 1851-1863.

[11]

Sa F, Rocha O L, Siqueira C A, et al. The effect of solidification variables on tertiary dendrite arm spacing in unsteady-state directional solidification of Sn-Pb and Al-Cu alloys[J]. Materials Science Engineering A, 2004, 373(1–2): 131-138.

[12]

Easton M, Davidson C, St John D. Effect of alloy composition on the dendrite arm spacing of multicomponent aluminum alloys[J]. Metallurgical and Materials Transactions A, 2010, 41(6): 1528-1538.

[13]

Alizadeh M. Correlation between the continuous casting parameters and secondary dendrite arm spacing in the mold region[J]. Materials Letters, 2013, 91, 146-149.

[14]

Hunt J D, Lu S Z. Numerical modeling of cellular/dendritic array growth: Spacing and structure predictions[J]. Metallurgical and Materials Transactions A, 1996, 27(3): 611-623.

[15]

Phanikumar G, Dutta P, Chattopadhyay K. Computational modeling of laser welding of Cu-Ni dissimilar couple[J]. Metallurgical and Materials Transactions B, 2004, 35(2): 339-350.

[16]

Kannatey-Asibu E. Principles of Laser Materials Processing[M]. 2009, Hoboken, USA: John Wiley & Sons.

[17]

Goldak J, Chakravarti A, Bibby M. New finite element model for welding heat sources[J]. Metallurgical Transactions B, 1984, 15(2): 299-305.

[18]

Abderrazak K, Bannour S, Mhiri H, et al. Numerical and experimental study of molten pool formation during continuous laser welding of AZ91 magnesium alloy[J]. Computational Materials Science, 2009, 44(3): 858-866.

[19]

Murray J L. The aluminium-copper system[J]. International Metals Reviews, 1985, 30(5): 211-233.

[20]

Assael M J, Kakosimos K, Banish R M, et al. Reference data for the density and viscosity of liquid aluminum and liquid iron[J]. Journal of Physical and Chemical Reference Data, 2006, 35(1): 285-300.

[21]

Assael M J, Kalyva A E, Antoniadis K D, et al. Reference data for the density and viscosity of liquid copper and liquid tin[J]. Journal of Physical and Chemical Reference Data, 2010, 39(3): 033105-033112.

[22]

Davis J R. Aluminum and Aluminum Alloys[M]. 1993, Materials Park: ASM International.

[23]

Davis J R. Copper and Copper Alloys[M]. 2001, Materials Park: ASM International.

[24]

Mcdonald R A. Enthalpy, heat capacity, and heat of fusion of aluminum from 366 K to 1647 K[J]. Journal of Physical Chemical Data, 1967, 12(1): 115-118.

[25]

Chekhovskoi V Y, Gusev Y V, Tarasov V D. Experimental study of the specific heat and enthalpy of copper in the range 300–2000 K[J]. High Temperatures — High Pressures, 2002, 34(3): 291-298.

[26]

Quaresma J M V, Santos C A, Garcia A. Correlation between unsteady-state solidification conditions, dendrite spacings, and mechanical properties of Al-Cu alloys[J]. Metallurgical and Materials Transaction A, 2000, 31(12): 3167-3178.

[27]

Webb E B, Grest G S. Liquid/vapor surface tension of metals: Embedded atom method with charge gradient corrections[J]. Physical Review Letters, 2001, 86(10): 2066-2069.

[28]

Du Y, Chang Y A, Huang B Y, et al. Diffusion coefficient of some solutes in fcc and liquid Al: Critical evaluation and correlation[J]. Materials Science and Engineering A, 2003, 363(1/2): 140-151.

[29]

Gunduz M, Hunt J D. The measurement of solid-liquid surface energies in the Al-Cu, Al-Si and Pb-Sn systems[J]. Acta Metallurgica, 1985, 33(9): 1651-1672.

[30]

Qu M, Liu L, Tang F T, et al. Effect of Al-Cu alloys diameter on thermal gradient and primary dendrite arm spacing during directional solidification[J]. Chinese Journal of Nonferrous Metals, 2008, 18(2): 282-287.

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/