Analysis, design and implementation of SiGe wideband dual-feedback low noise amplifier

Wei Zhang , Bo Song , Jun Fu , Yudong Wang , Jie Cui , Gaoqing Li , Wei Zhang , Zhihong Liu

Transactions of Tianjin University ›› 2014, Vol. 20 ›› Issue (4) : 299 -309.

PDF
Transactions of Tianjin University ›› 2014, Vol. 20 ›› Issue (4) : 299 -309. DOI: 10.1007/s12209-014-2118-9
Article

Analysis, design and implementation of SiGe wideband dual-feedback low noise amplifier

Author information +
History +
PDF

Abstract

A wideband dual-feedback low noise amplifier (LNA) was analyzed, designed and implemented using SiGe heterojunction bipolar transistor (HBT) technology. The design analysis in terms of gain, input and output matching, noise and poles for the amplifier was presented in detail. The area of the complete chip die, including bonding pads and seal ring, was 655 μm×495 μm. The on-wafer measurements on the fabricated wideband LNA sample demonstrated good performance: a small-signal power gain of 33 dB with 3-dB bandwidth at 3.3 GHz was achieved; the input and output return losses were better than −10 dB from 100 MHz to 4 GHz and to 6 GHz, respectively; the noise figure was lower than 4.25 dB from 100 MHz to 6 GHz; with a 5 V supply, the values of OP1dB and OIP3 were 1.7 dBm and 11 dBm at 3-dB bandwidth, respectively.

Keywords

wideband / dual-feedback / low noise amplifier (LNA) / SiGe heterojunction bipolar transistor

Cite this article

Download citation ▾
Wei Zhang, Bo Song, Jun Fu, Yudong Wang, Jie Cui, Gaoqing Li, Wei Zhang, Zhihong Liu. Analysis, design and implementation of SiGe wideband dual-feedback low noise amplifier. Transactions of Tianjin University, 2014, 20(4): 299-309 DOI:10.1007/s12209-014-2118-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chan Kam H, Meyer Robert G. A low-distortion monolithic wideband amplifier[C]. IEEE International Solid-State Circuits Conference, 1977

[2]

Lee W, Filanovsky I M. 2 V 3 GHz low-noise bipolar wideband amplifier [C]. Electrical and Computer Engineering. Edmonton, Canada, 1999

[3]

Kobayashi K W, Oki A K. A DC-10 GHz high gain-low noise GaAs HBT direct-coupled amplifier [J]. IEEE Microwave and Guided Wave Letters, 1995, 5(9): 308-310.

[4]

Chiang M-C, Lu S-S, Meng C C, et al. Analysis, design, and optimization of InGaP-GaAs HBT matched-impedance wide-band amplifiers with multiple feedback loops [J]. IEEE Journal of Solid-State Circuits, 2002, 37(6): 694-701.

[5]

Syu J-S, Wu T-H, Meng C-C, et al. Kukielka and Meyer wideband dual feedback amplifiers using GaInP/GaAs HBT technology [C]. Asia Pacific Microwave Conference. Singapore, 2009

[6]

Shen P, Zhang W, Jin D, et al. A monolithic SiGe HBT low noise amplifier using a novel resistive feedback configuration [C]. International Conference on Electric Information and Control Engineering. Wuhan, China, 2011

[7]

Huang Y, Zhang W, Xie H, et al. A 3–10 GHz low-noise amplifier using resistive feedback in SiGe HBT technology [C]. International Conference on Communication Software and Networks. Macau, China, 2009

[8]

Lee J, Cressler J D. Analysis and design of an ultrawideband low-noise amplifier using resistive feedback in SiGe HBT technology [J]. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(3): 1262-1268.

[9]

Ma D, Dai F F, Jaeger Richard C, et al. An 8–18 GHz wideband SiGe BiCMOS low noise amplifier [C]. Microwave Symposium Digest. Boston, USA, 2009

[10]

Gharpurey R. A broadband low-noise front-end amplifier for ultra wideband in 0. 13 μm CMOS [C]. Custom Integrated Circuits Conference. San Jose, USA, 2004

[11]

Amer A, Hegazi E, Ragai H. A low-power wideband CMOS LNA for WiMAX [J]. IEEE Transactions on Circuits and SystemsII:Express Briefs, 2007, 54(1): 4-8.

[12]

Bruccoleri F, Klumperink E A M, Nauta B, et al. Noise cancelling in wideband CMOS LNAs [C]. IEEE Inter national Solid-State Circuits Conference. San Francisco, USA, 2002

[13]

Chang-Wan K, Min-Suk K, Phan-Tuan A, et al. An ultra-wideband CMOS low noise amplifier for 3–5 GHz UWB system [J]. IEEE Journal of Solid-State Circuits, 2005, 40(2): 544-547.

[14]

Ahn H-T, Allstot David J. A 0.5–8.5 GHz fully differential CMOS distributed amplifier [J]. IEEE Journal of Solid-State Circuits, 2002, 37(8): 985-993.

[15]

Moez K, Elmasry Mohamed I. A low noise CMOS distributed amplifier for ultra-wide-band applications[J]. IEEE Transactions on Circuits and SystemsII:Express Briefs, 2008, 55(2): 126-130.

[16]

Chehrazi S, Mirzaei A, Bagheri R, et al. A 6. 5 GHz wideband CMOS low noise amplifier for multi-band use [C]. Custom Integrated Circuits Conference. San Jose, USA, 2005

[17]

Andrea B, Niknejad Ali M. An ultra-wideband CMOS LNA for 3.1 to 10.6 GHz wireless receivers [C]. IEEE International Solid-State Circuits Conference. San Francisco, USA, 2004

[18]

Rezaul Hasan S M. Analysis and design of a multistage CMOS band-pass low-noise preamplifier for ultrawideband RF receiver [J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2010, 18(4): 638-651.

[19]

Armijo Chris T, Meyer Robert G. A new wide-band Darlington amplifier [J]. IEEE Journal of Solid-State Circuits, 1989, 24(4): 1105-1109.

[20]

Battjes Carl R. Monolithic Wideband Amplifier: USA, 4236119 [P]. 1980

[21]

Gray Paul R, Hurst Paul J, Lewis Stephen H, et al. Analysis and Design of Analog Integrated Circuits [M]. 2001, New York, USA: John Wiley & Sons.

[22]

Wu T-H, Syu J-S, Meng C-Chun. Analysis and design of the 0.13-μm CMOS shunt-series series-shunt dual-feedback amplifier [J]. IEEE Transactions on Circuits and SystemsI:Regular Papers, 2009, 56(11): 2373-2383.

AI Summary AI Mindmap
PDF

155

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/