Fusion of ERT images based on Dempster-Shafer’s evidence theory

Shihong Yue , Yuefeng Li , Weiqing Li , Huaxiang Wang

Transactions of Tianjin University ›› 2013, Vol. 19 ›› Issue (6) : 404 -412.

PDF
Transactions of Tianjin University ›› 2013, Vol. 19 ›› Issue (6) : 404 -412. DOI: 10.1007/s12209-013-2060-2
Article

Fusion of ERT images based on Dempster-Shafer’s evidence theory

Author information +
History +
PDF

Abstract

In this paper, an electrical resistance tomography (ERT) imaging method is used as a classifier, and then the Dempster-Shafer’s evidence theory with fuzzy clustering is integrated to improve the ERT image quality. The fuzzy clustering is applied to determining the key mass function, and dealing with the uncertain, incomplete and inconsistent measured imaging data in ERT. The proposed method was applied to images with the same investigated object under eight typical current drive patterns. Experiments were performed on a group of simulations using COMSOL Multiphysics tool and measurements with a piece of porcine lung and a pair of porcine kidneys as test materials. Compared with any single drive pattern, the proposed method can provide images with a spatial resolution of about 10% higher, while the time resolution was almost the same.

Keywords

image fusion / electrical resistance tomography (ERT) / current drive pattern

Cite this article

Download citation ▾
Shihong Yue, Yuefeng Li, Weiqing Li, Huaxiang Wang. Fusion of ERT images based on Dempster-Shafer’s evidence theory. Transactions of Tianjin University, 2013, 19(6): 404-412 DOI:10.1007/s12209-013-2060-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dickin F, Wang M. Electrical resistance tomography for processing applications [J]. Measurement Science and Technology, 1996, 7(3): 247-260.

[2]

Cook R D, Saulnier G, Gisser D G, et al. ACT3: A highspeed, high-precision electrical impedance tomography [J]. IEEE Transactions on Biomedical Engineering, 1994, 41(8): 713-722.

[3]

Yue S H, Wu T, Cui L J, et al. Clustering mechanism for electric tomography imaging[J]. Science China Information Sciences, 2012, 55(12): 2849 2864

[4]

Zhang L F, Wang H X. A new normalization method based on electrical field lines for electrical capacitance tomography [J]. Measurement Science and Technology, 2009, 20(10): 104028

[5]

Yang W Q. Design of electrical capacitance tomography sensors [J]. Measurement Science and Technology, 2010, 21(4): 042001

[6]

Demidenko E, Hartov A, Soni N, et al. On optimal current patterns for electrical impedance tomography [J]. IEEE Transactions on Biomedical Engineering, 2005, 52(2): 238-248.

[7]

Zhang L F, Wang H X. Single source current drive patterns for electrical impedance tomography [C]. 2010 IEEE Instrumentation and Measurement Technology Conference, 2010

[8]

Brandstätter B, Steiner G, Kortschak B, et al. Fusion of electrical capacitance with ultrasound tomography — Analysis of methods[C]. 4th World Congress on Industrial Process Tomography, 2005

[9]

Qiu C, Hoyle B S, Podd F J W. Engineering and application of a dual-modality process tomography system [J]. Flow Measurement and Instrumentation, 2007, 18(5/6): 247-254.

[10]

Yue S H, Wu T, Liu Z Q, et al. Fused multi-characteristic validity index: An application to reconstructed image evaluation in electrical tomography [J]. International Journal of Computational Intelligence Systems, 2011, 4(5): 1052-1061.

[11]

Hall D L, Llinas J. An introduction to multisensor data fusion [J]. Proceedings of the IEEE, 1997, 85(1): 6-23.

[12]

Steiner G. Application and data fusion of different sensor modalities in topographic imaging [J]. Elektrotechnik und Informationstechnik, 2007, 124(7/8): 232-239.

[13]

Altincay H, Demirekler M. Speaker identification by combining multiple classifiers using Dempster-Shafer theory of evidence [J]. Speech Communication, 2003, 41(4): 531-547.

[14]

Kaftandjian V, Zhu Y M, Dupuis O, et al. The combined use of the evidence theory and fuzzy logic for improving multimodal nondestructive testing systems [J]. IEEE Transactions on Instrumentation and Measurement, 2005, 54(5): 1968-1977.

[15]

Zhu Y M, Bentabet L, Dupuis O, et al. Automatic determination of mass functions in Dempster-Shafer theory using fuzzy c-means and spatial neighborhood information for image segmentation [J]. Optical Engineering, 2002, 41(4): 760-770.

[16]

Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms [M]. 1981, New York, USA: Springer-Verlag.

[17]

Ahmed M N, Yamany S M, Mohamed N, et al. A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data [J]. IEEE Transactions on Medical Imaging, 2002, 21(3): 193-199.

[18]

Santosa F, Vogelius M. A back projection algorithm for electrical impedance imaging [J]. SIAM Journal on Applied Mathematics, 1990, 50(1): 216 243

[19]

Hayt W H, Buck J A. Engineering Electromagnetics [M]. 2006, USA: McGraw-Hill.

[20]

Taflove A, Hagness S C. Computational Electrodynamics: The Finite-Difference Time-Domain Method [M]. 1995, London, UK: Artech House.

[21]

Dong F, Jiang Z X, Qiao X T, et al. Application of electrical resistance tomography in two-phase flow measurement [J]. Flow Measurement and Instrumentation, 2003, 14(4/5): 183-192.

[22]

Zienkiewicz O C, Taylor R L. Finite Element Method for Fluid Dynamics [M]. 2001, USA: World Book Publishing House.

[23]

Yang W Q, Peng L H. Image reconstruction algorithms for electrical capacitance tomography [J]. Measurement Science and Technology, 2003, 14(1): R1 R13

[24]

Kim Y S, Lee S H, Ljaz U Z, et al. Sensitivity map generation in electrical capacitance tomography using mixed normalization models [J]. Measurement Science and Technology, 2007, 18(7): 2092-2102.

[25]

Wang F, Marashdeh Q, Fan L S, et al. Electrical capacitance volume tomography: Design and applications [J]. Sensors, 2010, 10(3): 1890-1917.

[26]

Cao Z, Xu L J, Wang H X. Image reconstruction technique of electrical capacitance tomography for lowcontrast dielectrics using Calderon’s method [J]. Measurement Science and Technology, 2009, 20(10): 104027

[27]

Boudraa A, Clarysse P. Fast fuzzy grey level image segmentation method [J]. Medical and Biological Engineering and Computing, 1997, 35(Suppl): 804-809.

[28]

Huang J Z, Ng M K, Rong H Q, et al. Automated variable weighting in k-means type clustering [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5): 657-668.

[29]

Yu J. General C-means clustering model [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1197-1211.

[30]

Yue S H, Wang J S, Gao T, et al. An unsupervised gridbased approach for clustering analysis[J]. Science China Information Sciences, 2010, 53(7): 1345-1357.

[31]

COMSOL Multiphysics[EB/OL]. http://www.comsol.cn. 2012-09-28.

[32]

Cui Z Q, Wang H X, Tang L, et al. A specific data acquisition scheme for electrical tomography [C]. IEEE International Instrumentation and Measurement Technology Conference, 2008

[33]

Yin W, Peyton A. A planar EMT system for the detection of faults on thin metallic plates [J]. Measurement Science and Technology, 2006, 17(8): 2130-2135.

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/