Crystal growth of calcite at conditions of gas processing in solvent mixtures of monoethylene glycol and water

R. Beck , M. Nergaard , J. P. Andreassen

Transactions of Tianjin University ›› 2013, Vol. 19 ›› Issue (2) : 79 -85.

PDF
Transactions of Tianjin University ›› 2013, Vol. 19 ›› Issue (2) : 79 -85. DOI: 10.1007/s12209-013-1823-0
Article

Crystal growth of calcite at conditions of gas processing in solvent mixtures of monoethylene glycol and water

Author information +
History +
PDF

Abstract

Growth kinetics of the most stable polymorph of calcium carbonate, calcite, has been studied in seeded stirred batch experiments in MEG-water solutions at 40 °C and 70 °C, conditions relevant for the processing of natural gas. It was found that MEG changes the growth order from two in pure water to one in solvent mixtures of MEG and water. Assuming parabolic growth (growth order is equal to two), it could be shown that MEG decreases the growth rate constant for calcite from 0.52 nm/s to 0.11 nm/s (70 °C) when the MEG-content is increased from 0 wt% MEG to 65 wt% MEG. Decreasing the temperature from 70 °C to 40 °C has a similar effect on the growth rate constant as raising the level of MEG to 65 wt%.

Keywords

crystallization / crystal growth kinetics / calcium carbonate / calcite / solvent mixtures / monoethylene glycol (MEG)

Cite this article

Download citation ▾
R. Beck, M. Nergaard, J. P. Andreassen. Crystal growth of calcite at conditions of gas processing in solvent mixtures of monoethylene glycol and water. Transactions of Tianjin University, 2013, 19(2): 79-85 DOI:10.1007/s12209-013-1823-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Beck R, Andreassen J P. Influence of crystallization conditions on crystal morphology and size of CaCO3 and their effect on pressure filtration[J]. Aiche J, 2012, 58(1): 107-121.

[2]

Flaten E M, Seiersten M, Andreassen J P. Growth of the calcium carbonate polymorph vaterite in mixtures of water and ethylene glycol at conditions of gas processing[J]. J Cryst Growth, 2010, 312(7): 953-960.

[3]

Andreassen J P, Hounslow M J. Growth and aggregation of vaterite in seeded-batch experiments[J]. Aiche J, 2004, 50(11): 2772-2782.

[4]

Burton W K, Cabrera N, Frank F C. The growth of crystals and the equilibrium structure of their surfaces[J]. Philosophical Transactions of the Royal Society of London — Series A: Mathematical and Physical Sciences, 1951, 243(866): 299 358

[5]

Nielsen A E. Electrolyte crystal-growth mechanisms[J]. J Cryst Growth, 1984, 67(2): 289-310.

[6]

Nielsen A E, Toft J M. Electrolyte crystal growth kinetics [J]. J Cryst Growth, 1984, 67(2): 278-288.

[7]

Nielsen A E. Theory of electrolyte crystal growth. The parabolic rate law[J]. Pure Appl Chem, 1981, 53(11): 2025-2039.

[8]

Brecevic L, Nielsen A E. Solubility of calcium-carbonate hexahydrate[J]. Acta Chem Scand, 1993, 47(7): 668-673.

[9]

Kaasa B. Prediction of pH, Mineral Precipitation and Multiphase Equilibria During Oil Recovery[D]. 1998, Trondheim: NTNU.

[10]

Kaasa B, Sandengen K, Østvold T. Thermodynamic predictions of scale potential, pH, and gas solubility in glycol-containing systems[C]. SPE International Symposium on Oilfield Scale, 2005, United Kingdom: Aberdeen 1-14.

[11]

Kralj D, Brecevic L, Kontrec J. Vaterite growth and dissolution in aqueous solution. 3. Kinetics of transformation [J]. J Cryst Growth, 1997, 177(3/4): 248-257.

[12]

Kazmierczak T F, Tomson M B, Nancollas G H. Crystalgrowth of calcium-carbonate-A controlled composition kinetic-study[J]. J Phys Chem, 1982, 86(1): 103-107.

[13]

Njegic-Dzakula B, Brecevic L, Falini G, et al. Calcite crystal growth kinetics in the presence of charged synthetic polypeptides[J]. Cryst Growth Des, 2009, 9(5): 2425-2434.

[14]

Christoffersen J, Christoffersen M R. Kinetics of spiral growth of calcite crystals and determination of the absolute rate-constant[J]. J Cryst Growth, 1990, 100(1/2): 203-211.

[15]

Xyla A G, Giannimaras E K, Koutsoukos P G. The precipitation of calcium-carbonate in aqueous-solutions [J]. Colloids and Surfaces, 1991, 53(3/4): 241-255.

[16]

Olderoy M O, Xie M L, Strand B L, et al. Polymorph switching in the calcium carbonate system by well-defined alginate oligomers[J]. Cryst Growth Des, 2011, 11(2): 520-529.

[17]

Mydlarz J, Jones A G. Growth and dissolution kinetics of potassium-sulfate crystals in aqueous 2-propanol solutions[J]. Chem Eng Sci, 1989, 44(6): 1391-1402.

[18]

Bourne J R, Davey R J. Solvent effects and growth kinetics of ionic-crystals[J]. J Cryst Growth, 1978, 44(5): 613-614.

[19]

Bennema P, Vandereerden J P. Crystal-growth from solution-development in computer-simulation[J]. J Cryst Growth, 1977, 42, 201-213.

[20]

Treivus E B. The solvent effect in the kinetics of crystalgrowth[J]. Uspekhi Khimii, 1992, 61(7): 1224-1242.

[21]

Bourne J R, Davey R J. Role of solvent-solute interactions in determining crystal-growth mechanisms from solution. 2. Growth kinetics of hexamethylene tetramine[J]. J Cryst Growth, 1976, 36(2): 287-296.

[22]

Lopes A, Farelo F. Growth kinetics of potassium chloride II-water-ethanol systems[J]. J Cryst Growth, 2006, 290(1): 220-224.

[23]

O’Ciardha C T, Mitchell N A, Hutton K W, et al. Determination of the crystal growth rate of paracetamol as a function of solvent composition[J]. Ind Eng Chem Res, 2012, 51(12): 4731-4740.

[24]

Flaten E M, Seiersten M, Andreassen J P. Induction time studies of calcium carbonate in ethylene glycol and water[J]. Chem Eng Res Des, 2010, 88(12A): 1659-1668.

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/