Synthesis and characterization of novel copolymers based on 3(S)-methyl-morpholine-2,5-dione

Yakai Feng , Chengbin Chen , Li Zhang , Hong Tian , Wenjie Yuan

Transactions of Tianjin University ›› 2012, Vol. 18 ›› Issue (5) : 315 -319.

PDF
Transactions of Tianjin University ›› 2012, Vol. 18 ›› Issue (5) : 315 -319. DOI: 10.1007/s12209-012-1864-9
Article

Synthesis and characterization of novel copolymers based on 3(S)-methyl-morpholine-2,5-dione

Author information +
History +
PDF

Abstract

A series of novel copolymers were successfully synthesized by ring-opening polymerization (ROP) of 3(S)-methyl-morpholine-2,5-dione (MMD) and 5-methyl-5-benzyloxycarbonyl-1,3-dioxan-2-one (MBC) using stannous octoate as catalyst. The copolymers were characterized by means of 1H-NMR and FT-IR spectroscopy. Gel permeation chromatography (GPC) test shows that the average-number relative molecular mass and average-weight relative molecular mass slightly increase with the increase of MBC content in feed. The results of differential scanning calorimetry (DSC) demonstrate that the glass transition temperature of copolymers increases with the increase of MBC content in copolymers. The copolymers of MMD and MBC are amorphous copolymers, as indicated by DSC results, while the homopolymer of MMD is semicrystalline.

Keywords

amino acid / 3(S)-methyl-morpholine-2,5-dione / 5-methyl-5-benzyloxycarbonyl-1,3-dioxan-2-one / ringopening polymerization / copolymer / biomaterial

Cite this article

Download citation ▾
Yakai Feng, Chengbin Chen, Li Zhang, Hong Tian, Wenjie Yuan. Synthesis and characterization of novel copolymers based on 3(S)-methyl-morpholine-2,5-dione. Transactions of Tianjin University, 2012, 18(5): 315-319 DOI:10.1007/s12209-012-1864-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lutz J. F., Andrieu J., Uzgun S., et al. Biocompatible, thermoresponsive, and biodegradable: Simple preparation of “all-in-one” biorelevant polymers[J]. Macromolecules, 2007, 40(24): 8540-8543.

[2]

Green J. J., Zhou B. Y., Mitalipova M. M., et al. Nanoparticles for gene transfer to human embryonic stem cell colonies[J]. Nano Letters, 2008, 8(10): 3126-3130.

[3]

Tian J., Feng Y., Xu Yongshen. Ring opening polymerization of D,L-lactide on magnetite nanoparticles[J]. Macromolecular Research, 2006, 14(2): 209 213

[4]

Lim S. K., Lee S. I., Jang S. G., et al. Synthetic aliphatic biodegradable poly(butylene succinate)/MWNT nanocomposite foams and their physical characteristics[J]. Journal of Macromolecular Science(Part B), 2011, 50(6): 1171-1184.

[5]

Feng Y., Lu J., Behl M., et al. Progress in depsipeptide-based biomaterials[J]. Macromolecular Bioscience, 2010, 10(9): 1008-1021.

[6]

Lin J., Zhu J., Chen T., et al. Drug releasing behavior of hybrid micelles containing polypeptide triblock copolymer[J]. Biomaterials, 2009, 30(1): 108-117.

[7]

Hamidi M., Azadi A., Rafiei P. Hydrogel nanoparticles in drug delivery[J]. Advanced Drug Delivery Reviews, 2008, 60(15): 1638-1649.

[8]

Feng Y., Guo Jintang. Biodegradable polydepsipeptides[J]. International Journal of Molecular Sciences, 2009, 10(2): 589 615

[9]

Borner H. G. Functional polymer-bioconjugates as molecular LEGO bricks[J]. Macromolecular Chemistry and Physics, 2007, 208(2): 124-130.

[10]

Kim J., Magno M. H. R., Alvarez P., et al. Osteogenic differentiation of pre-osteoblasts on biomimetic tyrosine-derived polycarbonate scaffolds[J]. Biomacromolecules, 2011, 12(10): 3520-3527.

[11]

Battig A., Hiebl B., Feng Y., et al. Biological evaluation of degradable, stimuli-sensitive multiblock copolymers having polydepsipeptide- and poly(ɛ-caprolactone) segments in vitro[J]. Clinical Hemorheology and Microcirculation, 2011, 48(1–3): 161-172.

[12]

Abayasinghe N. K., Perera K. P. U., Thomas C., et al. Amidomodified polylactide for potential tissue engineering applications[J]. Journal of Biomaterials Science Polymer Edition, 2004, 15(5): 595-606.

[13]

Katsarava R., Beridze V., Arabuli N., et al. Amino acid-based bioanalogous polymers: Synthesis, and study of regular poly(ester amide)s based on bis(α-amino acid) α, ω-alkylene diesters, and aliphatic dicarboxylic acids[J]. Journal of Polymer Science (Part A): Polymer Chemistry, 1999, 37(4): 391-407.

[14]

Schakenraad J. M., Nieuwenhuis P., Molenaar I., et al. In vivo and in vitro degradation of glycine/D,L-lactic acid copolymers[J]. Journal of Biomedical Materials Research, 1989, 23(11): 1271-1288.

[15]

Wang D., Feng Xinde. Copolymerization of ɛ-caprolactone with (3S)-3-[(benzyloxycarbonyl)methyl] morpholine-2,5-dione and the 13C NMR sequence analysis of the copolymer[J]. Macromolecules, 1998, 31(12): 3824-3831.

[16]

Gilon C., Klausner Y. A novel method for the facile synthesis of depsipeptides[J]. Tetrahedron Letters, 1979, 20(40): 3811-3814.

[17]

Chorev M., Willson C. G., Goodman M. A general approach to retro-isomeric linear peptide synthesis[J]. Journal of the American Chemical Society, 1977, 99(24): 8075-8076.

[18]

Katakai R., Kobayashi K., Yamada K., et al. Synthesis of sequential polydepsipeptides utilizing a new approach for the synthesis of depsipeptides[J]. Biopolymers, 2004, 73(6): 641-644.

[19]

Barrera D. A., Zylstra E., Lansbury E., et al. Copolymerization and degradation of poly(lactic acid-colysine)[J]. Macromolecules, 1995, 28(2): 425-432.

[20]

Zhu C., Chen Q., Tian W., et al. Synthesis and characterization of copolymers with 3-methylmorpholine-2,5-dione and L-lactide[J]. Materials Review, 2004, 18(7): 96-98.

[21]

Helder J., Kohn F. E., Sato S., et al. Synthesis of poly [oxyethylidenecarbonylimino (2-oxoethylene)][poly (glycine-D, L-lactic acid)] by ring opening polymerization[J]. Macromolecular Rapid Communications, 1985, 6(1): 9-14.

[22]

Feng Y., Klee D., Höcker H. New biomaterial: Triblock copolymers of poly [3(S)-isobutyl-morpholine-2,5-dione]-poly(ethylene oxide)[J]. Materialwissenschaft und Werkstofftechnik, 1999, 30(12): 862-868.

[23]

Kricheldorf H. R., Jenssen J. Polylactones. 16. Cationic polymerization of trimethylene carbonate and other cyclic carbonates[J]. Journal of Macromolecular Science(Part A): Chemistry, 1989, 26(4): 631-644.

[24]

Kricheldorf H. R., Weegen-Schulz B. Polymers of carbonic acid. 11. Reactions and polymerizations of aliphatic cyclocarbonates with boron halogenides[J]. Macromolecules, 1993, 26(22): 5991-5998.

[25]

Kricheldorf H. R., Hauser K. Polylactones, 45. Homo- and copolymerizations of 3-methylmorpholine-2, 5-dione initiated with a cyclic tin alkoxide[J]. Macromolecular Chemistry and Physics, 2001, 202(7): 1219-1226.

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/