Dynamic analysis of landing autonomous underwater vehicle

Bing Du , Yongxiang Jiang , Hongwei Zhang

Transactions of Tianjin University ›› 2012, Vol. 18 ›› Issue (4) : 298 -304.

PDF
Transactions of Tianjin University ›› 2012, Vol. 18 ›› Issue (4) : 298 -304. DOI: 10.1007/s12209-012-1808-4
Article

Dynamic analysis of landing autonomous underwater vehicle

Author information +
History +
PDF

Abstract

In autonomous underwater vehicles (AUVs) the onboard power used to complete missions is limited. To solve this problem, a landing AUV has been designed, which conserves energy by sitting on the seafloor while monitoring the ocean. In order to study the dynamic behaviors for better control of the AUV, the dynamic analysis of the landing AUV is presented in this paper. Based on the momentum theorem and the angular momentum theorem, the dynamic model of the landing AUV is derived. The simulations of rectilinear motion, rotary motion and helix motion indicate the dynamic behaviors of the AUV. The ocean experiments validate the dynamic model presented in this paper. The experiments also verify that the landing AUV can work for a longer time than common AUVs.

Keywords

landing AUV / power requirement / dynamic analysis / dynamic modeling

Cite this article

Download citation ▾
Bing Du, Yongxiang Jiang, Hongwei Zhang. Dynamic analysis of landing autonomous underwater vehicle. Transactions of Tianjin University, 2012, 18(4): 298-304 DOI:10.1007/s12209-012-1808-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chyba M. Autonomous underwater vehicles[J]. Ocean Engineering, 2009, 36(1): 1

[2]

Jun B. H., Park J. Y., Lee F. Y., et al. Development of the AUV’ ISiMI’ and a free running test in an Ocean Engineering Basin[J]. Ocean Engineering, 2009, 36(1): 2 14

[3]

Chyba M., Haberkorn T., Singh S. B., et al. Increasing underwater vehicle autonomy by reducing energy consumption[J]. Ocean Engineering, 2009, 36(1): 62-73.

[4]

Healey A. J., Good M. R. The NPS AUVII autonomous underwater vehicle testbed: Design and experimental verification[J]. Naval Engineers Journal, 1992, 104(3): 191-202.

[5]

Glegg S. A. L., Olivieri M. P., Coulson R. K., et al. A passive sonar system based on an autonomous underwater vehicle[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 700-710.

[6]

Sangekar M N, Thornton B, Nakatani T et al. Development of a landing algorithm for autonomous underwater vehicles using laser profiling[C]. In: OCEANS 2010 IEEE. Sydney, Australia, 2010. 1–7.

[7]

Chanop S.-Anan. Autonomous Underwater Vehicle: Vision and Control [D]. 2001, Australia: The Australian National University.

[8]

Caccia M., Indiveri G., Veruggio G. Modeling and identification of open-frame variable configuration unmanned underwater vehicles[J]. IEEE Journal of Oceanic Engineering, 2000, 25(2): 227-240.

[9]

Amin R, Khayyat A A, Osgouie K G. Neural networks control of autonomous underwater vehicle[C]. In: Proceedings of 2010 2nd International Conference on Mechanical and Electronics Engineering. Kyoto, Japan, 2010. 117–121.

[10]

Tarn T. J., Shoults G. A., Yang S. P. A dynamic model of an underwater vehicle with a robotic manipulator using Kane’s method[J]. Autonomous Robots, 1996, 3(2/3): 269-283.

[11]

Wang S. X., Zhang H. W., Hou W., et al. Control and navigation of the variable buoyancy AUV for underwater landing and takeoff[J]. International Journal of Control, 2007, 80(7): 1018-1026.

[12]

Wang S. X., Sun X. J., Wang Y. H., et al. Dynamic modeling and motion simulation for a winged hybrid-driven underwater glider[J]. China Ocean Engineering, 2011, 25(1): 97-112.

[13]

Liu F, Zhang H W, Du B. Design and optimization of overall structure for a landing AUV[C]. In: Proceedings of 2011 IEEE International Conference on Mechatronics and Automation. Beijing, China, 2011. 1345–1349.

[14]

Wang B, Su Y M, Wan L et al. Modeling and motion control system research of a mini underwater vehicle[C]. In: International Conference on Mechatronics and Automation. Changchun, China, 2009. 4463–4467.

[15]

Mahmoudian N, Geisert J, Woolsey C. Dynamics and Control of Underwater Gliders(I): Steady Motions[R]. Technical Report. Virginia Polytechnic Institute and State University, 2009.

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/