Analysis and simulation of molecular dynamics of lysozyme in water cluster system

Ping Na , Baihua Chen , Yunfen Wang , Jing Wang , Yanni Li

Transactions of Tianjin University ›› 2012, Vol. 18 ›› Issue (1) : 1 -7.

PDF
Transactions of Tianjin University ›› 2012, Vol. 18 ›› Issue (1) : 1 -7. DOI: 10.1007/s12209-012-1775-9
Article

Analysis and simulation of molecular dynamics of lysozyme in water cluster system

Author information +
History +
PDF

Abstract

The influence of water on protein conformation was investigated by simulating the molecular dynamics of a model protein lysozyme in different water systems. The lysozyme-water system with TIP3P water model and lysozyme-water cluster system with six-ring water model were evaluated. In addition, the radial distribution function of solvent around lysozyme was calculated. It is found that the distribution of water molecules around lysozyme is similar to that of water clusters. The analyses of dihedral angles and disulfide bonds of lysozyme show that the conformation of lysozyme is severely damaged in the lysozyme-water cluster system compared with that in the lysozyme-water system. This difference can be attributed to the formation of larger number of intermolecular hydrogen bonds between lysozyme and water cluster. It is in agreement with the analysis that water clusters can change the degree of denaturation in the process of heat denaturation of lysozyme.

Keywords

molecular dynamics / root mean square deviation / lysozyme / water cluster / hydrogen bond

Cite this article

Download citation ▾
Ping Na, Baihua Chen, Yunfen Wang, Jing Wang, Yanni Li. Analysis and simulation of molecular dynamics of lysozyme in water cluster system. Transactions of Tianjin University, 2012, 18(1): 1-7 DOI:10.1007/s12209-012-1775-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Levitt M., Park B. H. Water: Now you see it, now you don’t[J]. Structure, 1993, 1(4): 223-226.

[2]

Lounnas V., Pettitt B. M. Distribution function implied dynamics versus residence times and correlations: Solvation shells of myoglobin[J]. Proteins: Structure, Function, and Bioinformatics, 1994, 18(2): 148-160.

[3]

Rocchi C., Bizzarri A. R., Cannistraro S. Water dynamical anomalies evidenced by molecular-dynamics simulations at the solvent-protein interface[J]. Physical Review E, 1998, 57(3): 3315-3325.

[4]

Pizzitutti F., Marchi M., Sterpone F., et al. How protein surfaces induce anomalous dynamics of hydration water [J]. The Journal of Physical Chemistry B, 2007, 111(26): 7584-7590.

[5]

Marchi M., Sterpone F., Ceccarelli M. Water rotational relaxation and diffusion in hydrated lysozyme[J]. Journal of the American Chemical Society, 2002, 124(23): 6787-6791.

[6]

Wood K., Plazanet M., Gabel F., et al. Coupling of protein and hydration-water dynamics in biological membranes [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(46): 18049-18054.

[7]

Wood K., Frölich A., Paciaroni A., et al. Coincidence of dynamical transitions in a soluble protein and its hydration water: Direct measurements by neutron scattering and MD simulations[J]. Journal of the American Chemical Society, 2008, 130(14): 4586-4587.

[8]

Rhee Y. M., Sorin E. J., Jayachandran G., et al. Simulations of the role of water in the protein-folding mechanism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(17): 6456-6461.

[9]

Barth P., Alber T., Harbury P. B. Accurate conformation-dependent predictions of solvent effects on protein ionization constants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(12): 4898-4903.

[10]

Vitkup D., Ringe D., Petsko G. A., et al. Solvent mobility and the protein ‘glass’ transition[J]. Nature Structural Biology, 2000, 7(1): 34-38.

[11]

Tarek M., Martyna G. J., Tobias D. J. Amplitudes and frequencies of protein dynamics: Analysis of discrepancies between neutron scattering and molecular dynamics simulations[J]. Journal of the American Chemical Society, 2000, 122(42): 10450-10451.

[12]

Woutersen S., Emmerichs U., Bakker H. J. Femtosecond mid-IR pump-probe spectroscopy of liquid water: Evidence for a two-component structure[J]. Science, 1997, 278(5338): 658-660.

[13]

Kusanagi H. 17O NMR spectra of the isolated water molecules in hydrophobic poly(ε-caprolactone)[J]. Polymer Journal, 1996, 28(9): 825-826.

[14]

Roy R., Tiller W. A., Bell I., et al. The structure of liquid water; novel insights from materials research; potential relevance to homeopathy[J]. Materials Research Innovations, 2005, 9(4): 577-608.

[15]

Michaelides A., Morgenstern K. Ice nanoclusters at hydrophobic metal surfaces[J]. Nature Materials, 2007, 6(8): 597-601.

[16]

Zheng J., Li L. Y., Chen S. F., et al. Molecular simulation study of water interactions with oligo (ethylene glycol)-terminated alkanethiol self-assembled monolayers[J]. Langmuir, 2004, 20(20): 8931-8938.

[17]

Yoshioki S. Application of the independent molecule model to the calculation of free energy and rigid-body motions of water hexamers[J]. Journal of Molecular Graphics and Modelling, 2003, 21(6): 487-498.

[18]

Cruzan J. D., Braly L. B., Liu K., et al. Quantifying hydrogen bond cooperativity in water: VRT spectroscopy of the water tetramer[J]. Science, 1996, 271(5245): 59-62.

[19]

Saykally R. J., Blake G. A. Molecular interactions and hydrogen bond tunneling dynamics: Some new perspectives[J]. Science, 1993, 259(5101): 1570-1575.

[20]

Liu K., Brown M. G., Carter C., et al. Characterization of a cage form of the water hexamer[J]. Nature, 1996, 381(6582): 501-503.

[21]

Pugliano N., Saykally R. J. Measurement of quantum tunneling between chiral isomers of the cyclic water trimer[J]. Science, 1992, 257(5078): 1937-1940.

[22]

Hodgson A., Haq S. Water adsorption and the wetting of metal surfaces[J]. Surface Science Reports, 2009, 64(9): 381-451.

[23]

Kumar R., Wang F. F., Jenness G. R., et al. A second generation distributed point polarizable water model[J]. The Journal of Chemical Physics, 2010, 132(1): 0143091-1-12.

[24]

Luzar A., Chandler D. Hydrogen-bond kinetics in liquid water[J]. Nature, 1996, 379(6560): 55-57.

[25]

Rupley J. A., Gratton E., Careri G. Water and globular proteins [J]. Trends in Biochemical Sciences, 1983, 8(1): 18-22.

[26]

Careri G., Giansanti A., Rupley J. A. Critical exponents of protonic percolation in hydrated lysozyme powders[J]. Physical Review A, 1988, 37(7): 2703-2705.

[27]

Bone S., Pethig R. Dielectric studies of the binding of water to lysozyme[J]. Journal of Molecular Biology, 1982, 157(3): 571-575.

[28]

Roh J. H., Curtis J. E., Azzam S., et al. Influence of hydration on the dynamics of lysozyme[J]. Biophysical Journal, 2006, 91(7): 2573-2588.

[29]

Suherman P. M., Smith G. A percolation cluster model of the temperature dependent dielectric properties of hydrated proteins[J]. Journal of Physics D: Applied Physics, 2003, 36(4): 336-342.

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/