Simulation of reductive dechlorination processes in a lab-scale anaerobic biobarrier with enriched TCP dechlorinating consortium

Zhiling Li , Yasushi Inoue , Takuya Mizoguchi , Yohei Simizu , Naoko Yoshida , Arata Katayama

Transactions of Tianjin University ›› 2012, Vol. 18 ›› Issue (6) : 441 -449.

PDF
Transactions of Tianjin University ›› 2012, Vol. 18 ›› Issue (6) : 441 -449. DOI: 10.1007/s12209-012-1768-8
Article

Simulation of reductive dechlorination processes in a lab-scale anaerobic biobarrier with enriched TCP dechlorinating consortium

Author information +
History +
PDF

Abstract

In order to design and predict the dechlorination processes for remediating the halogenated aromatic compounds in the biobarrier system applied in situ, an anaerobic continuous-flow column was set up with the introduction of an enriched 2, 4, 6-trichlorophenol (TCP) reductive dechlorinating consortium. The fates of TCP and its metabolites were simulated according to the first-order sequential dechlorination kinetic model. The enriched TCP anaerobic dechlorinating consortium dechlorinated 100 μmol/L TCP to 4-chlorophenol (4-CP) via 2,4-dichlorophenol (DCP) in 10 d. The consortium was predominated with the phylum of Firmicutes and Bacteroidetes, based on the PCRdenaturing gradient gel electrophoresis (DGGE) analysis. After the consortium was applied to the column, the experimental data in the steady state were fitted by the least square method, and the first-order dechlorination kinetic constants from TCP to 2,4-DCP, from 2,4-DCP to 4-CP and from 4-CP to phenol, were 1.58 d−1, 2.23 d−1 and 0.206 d−1, respectively. According to the fitting results, the required biobarrier width for the complete remediation of TCP, 2,4-DCP and 4-CP were 126 cm, 130 cm and 689 cm, respectively. The dechlorination/ degradation of 4-CP must be increased when the technology is applied to the real site.

Keywords

biobarrier / 2,4,6-TCP anaerobic dechlorination / first-order kinetic model / simulation

Cite this article

Download citation ▾
Zhiling Li, Yasushi Inoue, Takuya Mizoguchi, Yohei Simizu, Naoko Yoshida, Arata Katayama. Simulation of reductive dechlorination processes in a lab-scale anaerobic biobarrier with enriched TCP dechlorinating consortium. Transactions of Tianjin University, 2012, 18(6): 441-449 DOI:10.1007/s12209-012-1768-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shiu W. Y., Ma K. C., Varhanickova D., et al. Chlorophenols and alkylphenols: A review and correlation of environmentally relevant properties and fate in an evaluative environment[J]. Chemosphere, 1994, 29(6): 1155-1224.

[2]

Kitunen V. H., Valo R. J. Salkinoja-Salonen M S. Contamination of soil around wood-preserving facilities by polychlorinated aromatic compounds[J]. Environ Sci Technol, 1987, 21(1): 96-101.

[3]

Nooten T. V., Springael D., Bastiaens L. Positive impact of microorganisms on the performance of laboratory-scale permeable reactive iron barriers[J]. Environ Sci Technol, 2008, 42(5): 1680-86.

[4]

Aulenta F., Majone M., Tandoi V. Enhanced anaerobic bioremediation of chlorinated solvents: Environmental factors influencing microbial activity and their relevance under field conditions[J]. J Chem Technol Biotechnol, 2006, 81(9): 1463-74.

[5]

Kazumi J., Haggblom M. M., Young L. Y. Degradation of monochlorinated and nonchlorinated aromatic compounds under iron-reducing conditions[J]. Appl Environ Microbiol, 1995, 61(11): 4069-4073.

[6]

Smets B. F., Pritchard P. H. Elucidating the microbial component of natural attenuation[J]. Curr Opin Biotechnol, 2003, 14(3): 283-288.

[7]

Amos B. K., Suchomel E. J., Pennell K. D., et al. Microbial activity and distribution during enhanced contaminant dissolution from a NAPL source zone[J]. Water Res, 2008, 42(12): 2963-2974.

[8]

Amos B. K., Suchomel E. J., Pennell K. D., et al. Spatial and temporal distributions of Geobacter lovleyi and Dehalococcoides spp. during bioenhanced PCE-NAPL dissolution[J]. Environ Sci Technol, 2009, 43(6): 1977-1985.

[9]

Lohner S. T., Tiehm A. Application of electrolysis to stimulate microbial reductive PCE dechlorination and oxidative VC biodegradation[J]. Environ Sci Technol, 2009, 43(18): 7098-7104.

[10]

Lanthier M., Juteau P., Lépine F., et al. Desulfitobacterium hafniense PCP is present in high proportion within the biofilms of highly performing pentachlorophenol-degrading, methanogenic fixed-film reactor[J]. Appl Environ Microbiol, 2005, 71(2): 1058-1065.

[11]

Wu W. M., Bhatnagar L., Zeikus J. G. Performance of anaerobic granules for degradation of pentachlorophenol[J]. Appl Environ Microbiol, 1993, 59(2): 389-397.

[12]

Kennes C., Wu W. M., Bhatnagar L., et al. Anaerobic dechlorination and mineralization of pentachlorophenol and 2,4,6-trichlorophenol by methanogenic pentachlorophenoldegrading granules[J]. Appl Microbiol Biotechnol, 1996, 44(6): 801-806.

[13]

Li Z., Inoue Y., Yang S., et al. Mass balance and kinetic analysis of anaerobic microbial dechlorination of pentachlorophenol in a continuous flow column[J]. J Biosci Bioeng, 2010, 110(3): 326-332.

[14]

Li Z. U., Yang S. Y., Inoue Y., et al. Complete anaerobic mineralization of pentachlorophenol (PCP) under continuous flow conditions by sequential combination of PCP-dechlorinating and phenol-degrading consortia[J]. Biotechnol Bioeng, 2010, 107(5): 775-785.

[15]

Antizar-Ladislao B., Galil N. I. Simulation of bioremediation of chlorophenols in a sandy aquifer[J]. Water Res, 2003, 37(1): 238-244.

[16]

Antizar-Ladislao B., Galil N. I. Biodegradation of 2, 4, 6-trichlorophenol and associated hydraulic conductivity reduction in sand-bed columns[J]. Chemosphere, 2006, 64(3): 339-349.

[17]

Dudal Y., Jacobson A. R., Samson R., et al. Modelling the dynamics of pentachlorophenol bioavailability in column experiments[J]. Water Research, 2004, 38(14–15): 3147-3154.

[18]

Chen S. T., Hsu C. Y., Berthouex P. M. Fate and modeling of pentachlorophenol degradation in a laboratory-scale anaerobic sludge digester [J]. J Environ Eng, 2006, 132(7): 795-802.

[19]

Keith L. H., Telliard W. A. Priority pollutants(I): A perspective view[J]. Environ Sci Technol, 1979, 13(4): 416-442.

[20]

Widdel F. G., Kohring W., Mayer F. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids(III): Characterization of the filamentous gliding Desulfonema limicola gen. nov., sp. nov., and Desulfonema magnum sp. nov[J]. Arch Microbiol, 1983, 134(4): 286-294.

[21]

Perkins P. S., Komisar S. J., Puhakka J. A., et al. Effects of electron donors and metabolic inhibitors on reductive dechlorination of 2,4,6-trichlorophenol[J]. Water Res, 1994, 28(10): 2101-2107.

[22]

Nicholson D. K., Woods S. L., Istok J. D., et al. Reductive dechlorination of chlorophenols by a pentachlorophenol acclimated methanogenic consortium[J]. Appl Envir Microbiol, 1992, 58(7): 2280-2286.

[23]

Chang B. V., Chen K. S., Yuan S. Y. Dechlorination of 2, 4, 6-TCP by an anaerobic mixed culture[J]. Chemosphere, 1995, 31(8): 3803-3811.

[24]

Madsen T., Aamand J. Anaerobic transformation and toxicity of trichlorophenols in a stable enrichment culture[J]. Appl Envir Microbiol, 1992, 58(2): 557-561.

[25]

Ehlers G. A., Rose P. D. The potential for reductive dehalogenation of chlorinated phenol in a sulphidogenic environment in in situ enhanced biodegradation[J]. Water SA, 2006, 32(2): 243-248.

[26]

Haggblom M. M., Young L. Y. Chlorophenol degradation coupled to sulfate reduction[J]. Applied Environ Microbiol, 1990, 56(11): 3255-3260.

[27]

Kazumi J., Haggblom M. M., Young L. Y. Degradation of monochlorinated and nonchlorinated aromatic compounds under iron-reducing conditions[J]. Appl Environ Microbiol, 1995, 61(11): 1546-1550.

[28]

Christiansen N., Ahring B. K. Desulfitobacterium hafniense sp. nov., an anaerobic, reductively dechlorinating bacterium[J]. Int J Syst Bacteriol, 1996, 46(2): 442-448.

[29]

Gerritse J., Renard V., Pedro T. M., et al. Desulfitobacterium sp. Strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or orthochlorinated phenols[J]. Arch Microbiol, 1996, 165(2): 132-140.

[30]

Tront J. M., Amos B. K., Löffler F. E., et al. Activity of Desulfitobacterium sp. strain Viet1 demonstrates bioavailability of 2,4-dichlorophenol previously sequestered by the aquatic plant Lemna minor[J]. Environ Sci Technol, 2006, 40(2): 529-535.

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/