Fast evaluation of degradation degree of organic coatings by analyzing electrochemical impedance spectroscopy data

Dahai Xia , Shizhe Song , Jihui Wang , Huichao Bi , Zhewen Han

Transactions of Tianjin University ›› 2012, Vol. 18 ›› Issue (1) : 15 -20.

PDF
Transactions of Tianjin University ›› 2012, Vol. 18 ›› Issue (1) : 15 -20. DOI: 10.1007/s12209-012-1752-3
Article

Fast evaluation of degradation degree of organic coatings by analyzing electrochemical impedance spectroscopy data

Author information +
History +
PDF

Abstract

The degradation coefficient is proposed to evaluate the degradation degree of organic coatings by directly analyzing the Bode plots of the electrochemical impedance spectroscopy (EIS) data. This paper investigated the degradation of phenolic epoxy coating/tinplate system by EIS and the degradation coefficient value, which correlates well with the results of breakpoint frequency and variation of phase angle at 10 Hz. Furthermore, the degradation process was confirmed by scanning electron microscope (SEM) and scanning probe microscopy (SPM). It is concluded that degradation coefficient can be used for the fast evaluation of degradation degree of organic coatings in practical applications.

Keywords

degradation process / electrochemical impedance spectroscopy / fast evaluation / organic coating

Cite this article

Download citation ▾
Dahai Xia, Shizhe Song, Jihui Wang, Huichao Bi, Zhewen Han. Fast evaluation of degradation degree of organic coatings by analyzing electrochemical impedance spectroscopy data. Transactions of Tianjin University, 2012, 18(1): 15-20 DOI:10.1007/s12209-012-1752-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gao Z. M., Song S. Z., Xu Y. H. Electrochemical impedance spectroscopy analysis of coating deterioration process with Kohonen neural networks[J]. Journal of Chinese Society for Corrosion and Protection, 2005, 25(2): 106-109.

[2]

Mansfeld F., Han L. T., Lee C. C., et al. Evaluation of corrosion protection by polymer coatings using electrochemical impedance spectroscopy and noise analysis[J]. Electrochimica Acta, 1998, 43(19/20): 2933-2945.

[3]

Conde A., de Damborenea J. J. Electrochemical impedance spectroscopy for studying the degradation of enamel coatings[J]. Corrosion Science, 2002, 44(7): 1555-1567.

[4]

Duval S., Keddam M., Sfaira M., et al. Electrochemical impedance spectroscopy of epoxy-vinyl coating in aqueous medium analyzed by dipolar relaxation of polymer[J]. Journal of the Electrochemical Society, 2002, 149(11): B520-B529.

[5]

Yao Z. P., Jiang Z. H., Xin S. G., et al. Electrochemical impedance spectroscopy of ceramic coatings on Ti-6Al-4V by micro-plasma oxidation[J]. Electrochimica Acta, 2005, 50(16/17): 3273-3279.

[6]

Zheludkevich M. L., Yasakau K. A., Bastos A. C., et al. On the application of electrochemical impedance spectroscopy to study the self-healing properties of protective coatings[J]. Electrochemistry Communications, 2007, 9(10): 2622-2628.

[7]

Amami S., Lemaitre C., Laksimi A., et al. Characterization by acoustic emission and electrochemical impedance spectroscopy of the cathodic disbonding of Zn coating[J]. Corrosion Science, 2010, 52(5): 1705-1710.

[8]

Shreepathi S., Bajaj P., Mallik B. P. Electrochemical impedance spectroscopy investigations of epoxy zinc rich coatings: Role of Zn content on corrosion protection mechanism[J]. Electrochimica Acta, 2010, 55(18): 5129-5134.

[9]

Behzadnasab M., Mirabedini S. M., Kabiri K., et al. Corrosion performance of epoxy coatings containing silane treated ZrO2 nanoparticles on mild steel in 3.5% NaCl solution [J]. Corrosion Science, 2011, 53(1): 89-98.

[10]

Fu Y., Wu X. Q., Han E. H., et al. Effects of nitrogen on the passivation of nickel-free high nitrogen and manganese stainless steels in acidic chloride solutions[J]. Electrochimica Acta, 2009, 54(16): 4005-4014.

[11]

Zoltowski P. Non-traditional approach to measurement models for analysis of impedance spectra[J]. Solid State Ionics, 2005, 176(25–28): 1979-1986.

[12]

Floyd F. L., Avudaiappan S., Gibson J., et al. Using electrochemical impedance spectroscopy to predict the corrosion resistance of unexposed coated metal panels[J]. Progress in Organic Coatings, 2009, 66(1): 8-34.

[13]

Xia D. H., Wang J. H., Song S. Z., et al. The corrosion behavior of lacquered tinplate in functional beverage[J]. Advanced Materials Research, 2011, 233–235, 1747-1751.

[14]

Zuo Y., Pang R., Li W., et al. The evaluation of coating performance by the variations of phase angles in middle and high frequency domains of EIS[J]. Corrosion Science, 2008, 50(12): 3322-3328.

[15]

Isao S., Kazuhiko S., Makoto Y. Estimation and prediction of degradation of coating films by frequency at maximum phase angle[J]. Journal of Coatings Technology, 1992, 64(810): 45-49.

[16]

Shiro H., Shirohi S. Electrochemical impedance for a large structure in soil[J]. Electrochimica Acta, 1993, 38(14): 1857-1865.

[17]

Zhao X., Wang J., Wang Y. H., et al. Analysis of deterioration process of organic protective coating using EIS assisted by SOM network[J]. Electrochemistry Communications, 2007, 9(6): 1394-1399.

[18]

Amirudin A., Thieny D. Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals[J]. Progress in Organic Coatings, 1995, 26(1): 1-28.

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/