Separation of acearylenes from high-temperature coal tar

Jianshi Zhou , Quanling Ma , Zhimin Zong , Xianyong Wei

Transactions of Tianjin University ›› 2012, Vol. 18 ›› Issue (5) : 378 -383.

PDF
Transactions of Tianjin University ›› 2012, Vol. 18 ›› Issue (5) : 378 -383. DOI: 10.1007/s12209-012-1742-5
Article

Separation of acearylenes from high-temperature coal tar

Author information +
History +
PDF

Abstract

High-temperature coal tar was extracted with petroleum ether (PE) under ultrasonic irradiation and the extracts were analyzed with gas chromatograph/mass spectrometer. The acearylene fractions including acenaphthylene, aceanthrylene and cyclopentapyrene were enriched together and named E, which was then transferred to a cartridge in Isolera-One flash chromatography. Three groups of compounds were eluted out with ethyl acetate/PE mixed solvent (volume ratio 1:9) and named E1, E2 and E3 according to their main components. Acenaphthylene accounted for 78.2% in E1, aceanthrylene 71.6% in E2 and cyclopentapyrene 75.9% in E3, respectively. The three groups of acearylenes were purified by Sephadex LH-20 column chromatography with ethanol/cyclohexane mixed solvent (volume ratio 1:4), and then confirmed with nuclear magnetic resonance spectrometer. This method indicates that flash chromatography has a good effect on separating the compounds with a similar structure after extraction under ultrasonic irradiation.

Keywords

separation / acearylenes / coal tar

Cite this article

Download citation ▾
Jianshi Zhou, Quanling Ma, Zhimin Zong, Xianyong Wei. Separation of acearylenes from high-temperature coal tar. Transactions of Tianjin University, 2012, 18(5): 378-383 DOI:10.1007/s12209-012-1742-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Domínguez A., Alvarez R., Blanco C., et al. Chromatographic evaluation of some selected polycyclic aromatic hydrocarbons of coal tars produced under different coking conditions and pitches derived from them[J]. Journal of Chromatography A, 1996, 719(1): 181-194.

[2]

Yuda Yürüm. Clean Utilization of Coal[M]. 1992, London: Kluwer Academic Publishers.

[3]

Liu J. H., Hu H. Q., Jin L. J., et al. Effects of the catalyst and reaction conditions on the integrated process of coal pyrolysis with CO2 reforming of methane[J]. Energy Fuels, 2009, 23(10): 4782-4786.

[4]

Laali K. K., Okazaki T. First examples of stable arenium ions from large methylene-bridged polycyclic aromatic hydrocarbons (PAHs): Directive effects and charge delocalization mode[J]. J Org Chem, 2001, 66(11): 3977-3983.

[5]

Koper C., Jenneskens L. W., Sarobe M. Externally fused cyclopenta-moieties in non-alternant CP PAH act as perisubstituents[J]. Tetrahedron Lett, 2002, 43(21): 3833-3836.

[6]

Sarobe M., Snoeijer J. D., Jenneskens L. W., et al. Cyclopenta[cd]_fluoranthene: Acefluoranthylene[J]. Tetrahedron Lett, 1995, 36(46): 8489-8492.

[7]

Koper C., Sarobe M., Jenneskens L. W. Redox properties of non-alternant CP-PAH: The effect of peripheral pentagon annelation[J]. Phys Chem, 2004, 6(2): 319-327.

[8]

Sarobe M., Flink S., Jenneskens L. W., et al. Cyclopent[fg]_acepyrylene, cyclopent acepyrylene and cyclopent[mn]acepyrylene: Novel C20H10 cyclopenta fused PAH[J]. Soc Chem Commun, 1995, 23(17): 2415-2416.

[9]

Jacob J. The significance of PAH as environmental carcinogens[J]. Pure Appl Chem, 1996, 68(2): 301-308.

[10]

Durant J. L., Busby W. F., Lafleur A. L., et al. Human cell mutagenicity of oxygenated, nitrated, and unsubstituted polycyclic aromatic hydrocarbons associated with urban aerosols[J]. Mutat Res, 1996, 371(3/4): 123-157.

[11]

Lobato M. J., Richters E. M., Koper C. CP-arene oxides the ultimate, active mutagenic forms of cyclopenta-fused polycyclic aromatic hydrocarbons(CP-PAHs)[J]. Mutat Res-Gen En, 2005, 581(1/2): 115-132.

[12]

Li B. M., Yuan C., Zong Z. M., et al. GC/MS analysis of organic compounds in hot water-extractable fraction from Shenfu coal[J]. Journal of China University of Mining and Technology, 2007, 17(3): 354-357.

[13]

Zong Y., Zong Z. M., Ding M. J., et al. Separation and analysis of organic compounds in an Erdos coal[J]. Fuel, 2009, 88(3): 469-474.

[14]

Morgan T. J., George A., Lvarez P., et al. Characterization of molecular mass ranges of two coal tar distillate fractions (creosote and anthracene oils) and aromatic standards by LD-MS, GC-MS, Probe-MS and size-exclusion chromatography[J]. Energy Fuels, 2008, 22(5): 3275-3292.

[15]

Heroda A. A., Lazaro M. J., Domin M., et al. Molecular mass distributions and structural characterisation of coal derived liquids[J]. Fuel, 2000, 79(11): 323-327.

[16]

Wilcke W., Krauss M., Amelung W. Carbon isotope signature of polycyclic aromatic hydrocarbons (PAHs): Evidence for different sources in tropical and temperate environments[J]. Environ Sci Technol, 2002, 36(16): 3530-3532.

[17]

Wornat M. J., Vernaglia B. A., Lafleu A. L. Cyclopenta-fused polycyclic aromatic hydrocarbons from brown coal pyrolysis[J]. Proc Combust Inst, 1998, 27, 1677-1686.

[18]

Marsh N. D., Wornat M. J. Formation pathways of ethynylsubstituted and cyclopenta-fused polycyclic aromatic hydrocarbons[J]. Proc Combust Inst, 2000, 28(2): 2585-2592.

[19]

Jenneskens L. W., Sarobe M., Zwikker J. W. Thermal generation and (inter)conversion of (multi) cyclopenta-fused polycyclic aromatic hydrocarbons[J]. Pure Appl Chem, 1996, 68(2): 219-224.

[20]

Liu M. M., Ling Y., Xie M. M., et al. Advances in compound specific isotope analysis of polycyclic aromatic hydrocarbons[J]. Rock and Mineral Analysis, 2010, 29(1): 164-170.

AI Summary AI Mindmap
PDF

144

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/