Application of gram-schmidt regression to modeling of giant magnetostrictive material

Hongli Wang , Yatao Zhang , Zhiwen Zhu

Transactions of Tianjin University ›› 2012, Vol. 18 ›› Issue (3) : 213 -216.

PDF
Transactions of Tianjin University ›› 2012, Vol. 18 ›› Issue (3) : 213 -216. DOI: 10.1007/s12209-012-1665-1
Article

Application of gram-schmidt regression to modeling of giant magnetostrictive material

Author information +
History +
PDF

Abstract

A giant magnetostrictive material (GMM) model is developed based on the hysteretic nonlinear theory. The Gram-Schmidt regression method is introduced to determine the parameters of the model as well as the relationship between the material strain and the strength and frequency of magnetic field in the model. Through comparison, it is shown that this regression method has good performance in significance test. Then the model is applied to study the motion law of a circular plate in classical GMM transducer, which helps control the transducer rapidly and accurately.

Keywords

giant magnetostrictive material / Gram-Schmidt regression / modeling

Cite this article

Download citation ▾
Hongli Wang, Yatao Zhang, Zhiwen Zhu. Application of gram-schmidt regression to modeling of giant magnetostrictive material. Transactions of Tianjin University, 2012, 18(3): 213-216 DOI:10.1007/s12209-012-1665-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sablik M. J., Jiles D. C. A model for hysteresis in magnetostriction[J]. Journal of Applied Physics, 1998, 64(10): 5402-5404.

[2]

Callen E., Callen H. B. The present status of the temperature dependence of magnetocrystalline anisotropy and the l(l+1)/2 power law[J]. Journal of Physics and Chemistry of Solids, 1966, 27(8): 1271-1285.

[3]

Han T., Li Guoping. Magnetization-based hysteresis model for a giant magnetostrictive actuator[J]. Journal of Functional Materials and Devices, 2010, 16(1): 41-46.

[4]

Weng L., Wang Bowen. Study of the output displacement control for a giant magnetostrictive actuator[J]. Chinese Journal of Scientific Instrument, 2006, 27(7): 800-803.

[5]

Wang B., Cao Shuying. Magnetostrictive properties of epoxy bonded Tb-Dy-Fe composites[J]. Journal of the Chinese Rare Earth Society, 2003, 21(6): 729-732.

[6]

Weng L., Wang Bowen. Dynamic model of giant magnetostrictive transducer under magnetic field and stress[J]. Transactions of China Electrotechnical Society, 2008, 23(12): 17-22.

[7]

Cao S., Wang Bowen. Parameter identification of hysteretic model for giant magnetostrictive actuator using hybrid genetic algorithm[J]. Proceedings of the CSEE, 2004, 24(13): 127-134.

[8]

Zhu Z., Wang Jin. Modeling of shape memory alloy based on hysteretic nonlinear theory[J]. Applied Mechanics and Materials, 2011, 44(47): 537-541.

[9]

Serneel S., Verdonck T. Principal component regression for data containing outliers and missing elements[J]. Computational Statistics and Data Analysis, 2009, 53(11): 3855 3863

[10]

Parab J. S., Gad R. S. Noninvasive glucometer model using partial least square regression technique for human blood matrix[J]. Journal of Applied Physics, 2010, 107(10): 1-5.

[11]

Wang H., Chen Meiling. Gram-Schmidt regression and application in cutting tool abrasion prediction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(6): 729-733.

[12]

Wang J., Wang Changsong. Forced vibration of a circular eradiation plate with a columned magnetostrictive actuator[J]. Journal of Vibration and Shock, 2009, 28(3): 164-167.

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/