Composition operator from logarithmic Bloch-type space to Bergman space on unit polydisc

Li Zhang , Honggang Zeng

Transactions of Tianjin University ›› 2011, Vol. 17 ›› Issue (6) : 450 -453.

PDF
Transactions of Tianjin University ›› 2011, Vol. 17 ›› Issue (6) : 450 -453. DOI: 10.1007/s12209-011-1763-5
Article

Composition operator from logarithmic Bloch-type space to Bergman space on unit polydisc

Author information +
History +
PDF

Abstract

In order to investigate the boundedness or compactness of composition operator from the logarithmic Bloch-type space to the Bergman space on the unit polydisc, the classic Bergman norm is firstly changed into another equivalent norm. Then according to some common inequalities, the properties of logarithmic Bloch-type space and the absolute continuity of the general integral, the conditions which the symbol map must meet when the composition operator is bounded or compact are obtained after a series of calculations, and the boundedness and compactness are proved to be equivalent.

Keywords

composition operator / logarithmic Bloch-type space / Bergman space / compactness / boundedness

Cite this article

Download citation ▾
Li Zhang, Honggang Zeng. Composition operator from logarithmic Bloch-type space to Bergman space on unit polydisc. Transactions of Tianjin University, 2011, 17(6): 450-453 DOI:10.1007/s12209-011-1763-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Timoney R. M. Bloch functions in several complex variables[J]. Bulletin of the London Mathematical Society, 1980, 12(4): 241-267.

[2]

Benke G., Chang D. C. A note on weighted Bergman spaces and the Cesáro operator[J]. Nagoya Mathematical Journal, 2000, 159, 25-43.

[3]

Stević S. Weighted integrals of holomorphic functions on the polydisc[J]. Zeitschrift für Analysis und ihre Anwendungen (Journal for Analysis and Its Applications), 2004, 23(3): 577-587.

[4]

Contreras M. D., Hernandez-Diaz A. G. Weighted composition operators in weighted Banach spaces of analytic functions[J]. Journal of the Australian Mathematical Society (Series A), 2000, 69, 41-46.

[5]

Cowen C. C., MacCluer B. D. Composition Operators on Spaces of Analytic Functions[M]. 1995, Boca Raton: CRC Press.

[6]

Madigan K. M. Composition operators on analytic Lipschitz spaces[J]. Proceedings of the American Mathematical Society, 1993, 119(2): 465-473.

[7]

Madigan K., Matheson A. Compact composition operators on the Bloch space[J]. Transactions of the American Mathematical Society, 1995, 347(7): 2679-2687.

[8]

Montes-Rodriguez A. Weighted composition operators on weighted Banach spaces of analytic functions[J]. Journal of the London Mathematical Society, 2000, 61(3): 872-884.

[9]

Zhu Kehe. Operator Theory in Function Spaces[M]. 1990, New York: Marcel Dekker, Inc..

[10]

Stević S. Composition operators from the Hardy space to the nth weighted-type space on the unit disk and the halfplane[J]. Applied Mathematics and Computation, 2010, 215(11): 3950-3955.

[11]

Wulan H., Zheng D., Zhu Kehe. Compact composition operators on BMOA and the Bloch space[J]. Proceedings of the American Mathematical Society, 2009, 137(11): 3861-3868.

[12]

Zhou Zehua. Composition operators on the Lipschitz space in polydiscs[J]. Science in China (Series A): Mathematics, 2003, 46(1): 33-38.

[13]

Zhou Z., Chen Renyu. On the composition operators on the Bloch space of several complex variables[J]. Science in China (Series A): Mathematics, 2005, 48(Supp1): 392-399.

[14]

Zhou Zehua, Liu Yan. The essential norms of composition operators between generalized Bloch spaces in the polydisc and their applications[J]. Journal of Inequalities and Applications, 2006(2006): 1–22.

[15]

Stević S. On new Bloch-type spaces[J]. Applied Mathematics and Computation, 2009, 215(2): 841-849.

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/