Secrecy performance of untrusted relay’s cooperation under fading channels

Xiaomei Fu , Li Zhang , Dawei Wang , Yonghong Hou

Transactions of Tianjin University ›› 2011, Vol. 17 ›› Issue (6) : 440 -445.

PDF
Transactions of Tianjin University ›› 2011, Vol. 17 ›› Issue (6) : 440 -445. DOI: 10.1007/s12209-011-1681-6
Article

Secrecy performance of untrusted relay’s cooperation under fading channels

Author information +
History +
PDF

Abstract

The secrecy performance of cooperation with an untrusted relay under a quasi-static fading channel is analyzed in this paper. An achievable secrecy rate is provided and the influence of selfish behavior of untrusted relay is analyzed. Furthermore, the secrecy performance of the scheme is discussed and compared with that of the case where the relay is just an eavesdropper. Simulation results show that the untrusted relay’s cooperation in the fading case reduces the outage probability from 1/2 to 1/3 and achieves a higher outage secrecy capacity.

Keywords

physical layer security / secrecy rate / outage secrecy capacity

Cite this article

Download citation ▾
Xiaomei Fu, Li Zhang, Dawei Wang, Yonghong Hou. Secrecy performance of untrusted relay’s cooperation under fading channels. Transactions of Tianjin University, 2011, 17(6): 440-445 DOI:10.1007/s12209-011-1681-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Van der Meulen E. C. Three-terminal communication channels[J]. Advances in Applied Probability, 1971, 3, 120-154.

[2]

Cover T. M., El Gamal A. A. Capacity theorems for the relay channel[J]. IEEE Transactions on Information Theory, 1979, 25(5): 572-584.

[3]

Wyner A. D. The wire-tap channel[J]. Bell System Technical Journal, 1975, 54(8): 1355-1387.

[4]

Leung-Yan-Cheong S. K., Hellman M. E. The Gaussian wiretap channel[J]. IEEE Transactions on Information Theory, 1978, 24(4): 451-456.

[5]

Barros J, Rodrigues M R D. Secrecy capacity of wireless channels[C]. In: Proceedings of IEEE International Symposium on Information Theory. Seattle, USA, 2006. 356–360.

[6]

Bloch M, Barros J, Rodrigues M R D et al. An opportunistic physical-layer approach to secure wireless communications[C]. In: Proceedings of Allerton Conference on Communication Control and Computing. Monticello, USA, 2006.

[7]

Liang Y, Vincent Poor H, Shamai S. Secrecy capacity region of fading broadcast channels[C]. In: Proceedings of IEEE International Symposium on Information Theory. Nice, France, 2007.

[8]

Liang Y., Vincent Poor H., Shamai S. Secure communication over fading channels[J]. IEEE Transactions on Information Theory, 2008, 54(6): 2470-2492.

[9]

Tekin E., Yener A. The Gaussian multiple access wire-tap channel[J]. IEEE Transactions on Information Theory, 2008, 54(12): 5747-5755.

[10]

Tekin E., Yener A. The general Gaussian multiple access and two-way wire-tap channels: Achievable rates and cooperative jamming[J]. IEEE Transactions on Information Theory, 2008, 54(6): 2735-2751.

[11]

Lai L., El Gamal H. The relay-eavesdropper channel: Cooperation for secrecy[J]. IEEE Transactions on Information Theory, 2008, 54(9): 4005-4019.

[12]

Yuksel M, Erkip E. The relay channel with a wiretapper[C]. In: Proceedings of 41st Annual Conference on Information Sciences and Systems. Baltimore, USA, 2007. 13–18.

[13]

Liu R., Wade T. Securing Wireless Communications at the Physical Layer[M]. 2010, New York: Springer.

[14]

He X., Yener A. Cooperation with an untrusted relay: A secrecy perspective[J]. IEEE Transactions on Information Theory, 2010, 56(8): 3807-3827.

[15]

Rappaport T. S. Wireless Communications: Principles and Practice[M]. 2001, London: Prentice Hall PTR.

AI Summary AI Mindmap
PDF

167

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/