Stochastic optimal control of first-passage failure for rectangular thin plate vibration model under gaussian white-noise excitations

Gen Ge , Hongli Wang

Transactions of Tianjin University ›› 2011, Vol. 17 ›› Issue (6) : 431 -434.

PDF
Transactions of Tianjin University ›› 2011, Vol. 17 ›› Issue (6) : 431 -434. DOI: 10.1007/s12209-011-1607-3
Article

Stochastic optimal control of first-passage failure for rectangular thin plate vibration model under gaussian white-noise excitations

Author information +
History +
PDF

Abstract

A rectangular thin plate vibration model subjected to inplane stochastic excitation is simplified to a quasi-nonintegrable Hamiltonian system with two degrees of freedom. Subsequently a one-dimensional Itô stochastic differential equation for the system is obtained by applying the stochastic averaging method for quasi-nonintegrable Hamiltonian systems. The conditional reliability function and conditional probability density are both gained by solving the backward Kolmogorov equation numerically. Finally, a stochastic optimal control model is proposed and solved. The numerical results show the effectiveness of this method.

Keywords

rectangular thin plate / first-passage failure / stochastic optimal control

Cite this article

Download citation ▾
Gen Ge, Hongli Wang. Stochastic optimal control of first-passage failure for rectangular thin plate vibration model under gaussian white-noise excitations. Transactions of Tianjin University, 2011, 17(6): 431-434 DOI:10.1007/s12209-011-1607-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhu W. Q., Yang Y. Q. Stochastic averaging of quasi-nonintegrable Hamiltonian systems[J]. Journal of Applied Mechanics, 1997, 64(1): 157-164.

[2]

Jin Y., Xu Wei. Mean first-passage time of a bistable kinetic model driven by two different kinds of colored noises[J]. Chao, Solitons and Fractals, 2005, 23(1): 275-280.

[3]

Zhu W. Q., Huang Z. L. Lyapunov exponents and stochastic stability of quasi-integrable Hamiltonian systems[J]. Journal of Applied Mechanics, 1999, 66(1): 211-227.

[4]

Zhu W. Q., Ying Z. G., Soong T. T. An optimal nonlinear feedback control strategy for randomly excited structural systems[J]. Nonlinear Mechanics, 2001, 24(1): 31-51.

[5]

Ge G., Wang H., Xu Jia. Stochastic bifurcation of rectangular thin plate vibration system subjected to axial inplane Gaussian white noise excitation[J]. Transactions of Tianjin University, 2011, 17(1): 13-19.

[6]

Li J., Xu Wei. Stochastic stabilization of first-passage failure of Rayleigh oscillator under Gaussian white-noise parametric excitations[J]. Chaos, Solitons and Fractals, 2005, 26(5): 1515-1521.

[7]

Li X. P., Huan R. H., Wei D. M. Feedback minimization of the first-passage failure of a hysteretic system under random excitations[J]. Probabilistic Engineering Mechanics, 2010, 25(2): 245-248.

[8]

Deng M., Zhu Weiqiu. Feedback minimization of firstpassage failure of quasi-integrable Hamiltonian system[J]. Acta Mechanica Sinica, 2007, 23(4): 437-444.

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/