Bifurcation of periodic motion of rigid rotor system supported by angular contact ball bearings

Li Cui , Changli Liu , Jianrong Zheng

Transactions of Tianjin University ›› 2011, Vol. 17 ›› Issue (6) : 404 -410.

PDF
Transactions of Tianjin University ›› 2011, Vol. 17 ›› Issue (6) : 404 -410. DOI: 10.1007/s12209-011-1587-3
Article

Bifurcation of periodic motion of rigid rotor system supported by angular contact ball bearings

Author information +
History +
PDF

Abstract

Rotor systems supported by angular contact ball bearings are complicated due to nonlinear Hertzian contact force. In this paper, nonlinear bearing forces of ball bearing under five-dimensional loads are given, and 5-DOF dynamic equations of a rigid rotor ball bearing system are established. Continuation-shooting algorithm for periodic solutions of the nonlinear non-autonomous dynamic system and Floquet multipliers of the system are used. Furthermore, the bifurcation and stability of the periodic motion of the system in different parametric domains are also studied. Results show that the bifurcation and stability of period-1 motion vary with structural parameters and operating parameters of the rigid rotor ball bearing system. Avoidance of unbalanced force and bending moment, appropriate initial contact angle, axial load and damping factor help enhance the unstable rotating speed of period-1 motion.

Keywords

angular contact ball bearing / rigid rotor system / bifurcation / periodic motion / continuation-shooting algorithm

Cite this article

Download citation ▾
Li Cui, Changli Liu, Jianrong Zheng. Bifurcation of periodic motion of rigid rotor system supported by angular contact ball bearings. Transactions of Tianjin University, 2011, 17(6): 404-410 DOI:10.1007/s12209-011-1587-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fukata S., Gad E. H., Kondou T., et al. On the radial vibration of ball bearings (computer simulation)[J]. Bulletin of the JSME, 1985, 28(239): 899-904.

[2]

Kim Y. B., Noah S. T. Bifurcation analysis for a modified Jeffcott rotor with bearing clearances[J]. Nonlinear Dynamics, 1990, 1(3): 221-241.

[3]

Sankaravelu A., Noah S. T., Burger C. P. Bifurcation and chaos in ball bearings[J]. Nonlinear and Stochastic Dynamics, 1994, 192, 313-325.

[4]

Tiwari M., Gupta K. Effect of radial internal clearance of a ball bearing on the dynamics of a balanced horizontal rotor[J]. Journal of Sound and Vibration, 2000, 238(5): 723-756.

[5]

Tiwari M., Gupta K. Dynamic response of an unbalanced rotor supported on ball bearings[J]. Journal of Sound and Vibration, 2000, 238(5): 757-779.

[6]

Harsha S. P., Sandeep K., Prakash R. The effect of speed of balanced rotor on nonlinear vibrations associated with ball bearings[J]. Mechanical Sciences, 2003, 45(4): 725-740.

[7]

Harsha S. P. Nonlinear dynamic analysis of an unbalanced rotor supported by roller bearing[J]. Chaos, Solitons and Fractals, 2005, 26(1): 47-66.

[8]

Harsha S. P. Nonlinear dynamic response of a balanced rotor supported by rolling element bearings due to radial internal clearance effect[J]. Mechanism and Machine Theory, 2006, 41(6): 688-706.

[9]

Bai C., Xu Qingyu. Dynamic model of ball bearings with internal clearance and waviness[J]. Journal of Sound and Vibration, 2006, 294(1/2): 23-48.

[10]

Jang G. H., Jeong S. W. Nonlinear excitation model of ball bearing waviness in a rigid rotor supported by two or more ball bearings considering five degrees of freedom[J]. ASME Journal of Tribology, 2002, 124(1): 82-90.

[11]

Han B., Tang L., Deng Si’er. Nonlinear dynamics analysis of the rotor-rolling bearing system[J]. Noise and Vibration Control, 2008, 28(4): 20-23.

[12]

Chen Guo. Nonlinear dynamics of unbalance-looseness coupling faults of rotor-ball bearing-stator coupling system[J]. Chinese Journal of Mechanical Engineering, 2008, 44(3): 82-88.

[13]

Wang L. Q., Cui L., Gu L., et al. Study on dynamic characteristics of angular ball bearing with nonlinear vibration of rotor system[J]. Proceedings of the Institution of Mechanical Engineers, Part C, Journal of Mechanical Engineering Science, 2008, 222(C9): 1811-1819.

[14]

Harris T. A. Rolling Bearing Analysis[M]. 2001, New York: John Wiley & Sons Inc.

[15]

Wang L., Cui L., Zheng D., et al. Analysis on dynamic characteristics of aero-engine high-speed ball bearings[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(6): 1461-1467.

[16]

Sundararajan P., Noah S. T. An algorithm for response and stability of large order nonlinear systems application to rotor systems[J]. Journal of Sound and Vibration, 1998, 214(4): 695-723.

[17]

Li D., Xu Jianxue. A method to determine the periodic solution of the nonlinear dynamics system[J]. Journal of Sound and Vibration, 2004, 275(1/2): 1-16.

[18]

Luo Y., Wen Bangchun. Stability of the two-span rotor-bearing system periodic with coupling faults of crack and rub-impact[J]. Chinese Journal of Mechanical Engineering, 2008, 44(4): 123-127.

[19]

Liu C., Xia C., Zheng Jianrong. Bifurcation of periodic motion on crack and film coupled fault of rotor system[J]. Journal of Vibration, Measurement & Diagnosis, 2008, 28(1): 35-38.

AI Summary AI Mindmap
PDF

151

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/