Effects of concentration and freeze-thaw on the first hydration shell structure of Zn2+ ions

Wenhua Wang , Lin Zhao , Bo Yan , Xin Tan , Yun Qi , Bo He

Transactions of Tianjin University ›› 2011, Vol. 17 ›› Issue (5) : 381 -385.

PDF
Transactions of Tianjin University ›› 2011, Vol. 17 ›› Issue (5) : 381 -385. DOI: 10.1007/s12209-011-1583-7
Article

Effects of concentration and freeze-thaw on the first hydration shell structure of Zn2+ ions

Author information +
History +
PDF

Abstract

To investigate the effects of salt concentration and freeze-thaw (FT) on the first hydration shell of Zn2+ ions in Zn(NO3)2 aqueous solutions, extended X-ray absorption fine structure (EXAFS) spectroscopy was used to examine Zn K-edge EXAFS spectra of Zn(NO3)2 aqueous solutions with various concentrations before and after FT treatment. The influences of salt concentration and freeze-thaw on the structural parameters of the first hydration shell of Zn2+ ions, including hydration number, Zn-O distance and thermal disorder, were analyzed. The results show that Zn2+ ions have 3.2–6.8 nearest oxygen neighbors with the Zn-O distance being 0.202–0.207 nm. In highly concentrated solutions, Zn2+ ions are hydrated with four water molecules in a tetrahedral form. The dilution of Zn(NO3)2 aqueous solutions increases the number of water molecules in the first hydration shell of Zn2+ ions to six with their octahedral arrangement. Both the hydration number in the first hydration shell of Zn2+ ions and the degree of thermal disorder increase when the FT treatment is operated in Zn(NO3)2 aqueous solutions.

Keywords

EXAFS / Zn(NO3)2 aqueous solution / first hydration shell / hydration number / concentration / freeze-thaw

Cite this article

Download citation ▾
Wenhua Wang, Lin Zhao, Bo Yan, Xin Tan, Yun Qi, Bo He. Effects of concentration and freeze-thaw on the first hydration shell structure of Zn2+ ions. Transactions of Tianjin University, 2011, 17(5): 381-385 DOI:10.1007/s12209-011-1583-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Coleman J. E. Zinc proteins: Enzymes, storage proteins, transcription factors, and replication proteins[J]. Annual Review of Biochemistry, 1992, 61(1): 897-946.

[2]

Lipscomb W. N., Sträter N. Recent advances in zinc enzymology[J]. Chemical Reviews, 1996, 96(7): 2375-2434.

[3]

Sandstrom D. R., Dodgen H. W., Lytle F. W. Study of Ni (II) coordination in aqueous solution by EXAFS analysis[J]. Journal of Chemical Physics, 1977, 67(2): 473-476.

[4]

Rudolph W. W., Pye C. C. Zinc(II) hydration in aqueous solution: A Raman spectroscopic investigation and an ab initio molecular orbital study of zinc(II) water clusters [J]. Journal of Solution Chemistry, 1999, 28(9): 1045-1070.

[5]

Chillemi G., D’Angelo P., Pavel N. V., et al. Development and validation of an integrated computational approach for the study of ionic species in solution by means of effective two-body potentials. The case of Zn2+, Ni2+, and Co2+ in aqueous solutions[J]. Journal of the American Chemical Society, 2002, 124(9): 1968-1976.

[6]

Díaz N., Suárez D., Merz J. K. M. Hydration of zinc ions: Theoretical study of [Zn(H2O)4](H2O)8 2+ and [Zn-(H2O)6](H2O)6 2+[J]. Chemical Physics Letters, 2000, 326(3/4): 288-292.

[7]

Ohtaki H., Radnai T. Structure and dynamics of hydrated ions[J]. Chemical Reviews, 1993, 93(3): 1157-1204.

[8]

Ohtaki H., Yamaguchi T., Maeda M. X-ray diffraction studies of the structures of hydrated divalent transition-metal ions in aqueous solution[J]. Bulletin of the Chemical Society of Japan, 1976, 49(3): 701-708.

[9]

Neilson G. W., Enderby J. E. Aqueous solutions and neutron scattering[J]. Journal of Physical Chemistry, 1996, 100(4): 1317-1422.

[10]

D’Angelo P., Benfatto M., Longa S. D., et al. Combined XANES and EXAFS analysis of Co2+, Ni2+, and Zn2+ aqueous solutions[J]. Physical Review B, 2002, 66(6): 064209-1-064209-7.

[11]

Nilsson K. B., Eriksson L., Kessler V. G., et al. The coordina tion chemistry of the copper(II), zinc(II) and cadmium(II) ions in liquid and aqueous ammonia solution, and the crystal structures of hexaammine copper(II) perchlorate and chloride, and hexaammine cadmium (II) chloride[J]. Journal of Molecular Liquids, 2007, 131/132(3): 113-120.

[12]

Li Fuzhi. Research on Measurement Methods, Regularity and Influencing Factors of Drinking Water Cluster Structure[D]. 2002, Beijing: Department of Environmental Science and Technology, Tsinghua University.

[13]

Wang W., Zhao L., Yan B., et al. Effects of concentration and freeze-thaw treatment on the local structure of Cu2+ in CuCl2 aqueous solutions[J]. Acta Physico-Chimica Sinica, 2010, 26(2): 265-269.

[14]

Zhong W., He B., Li Z., et al. USTCXAFS 2.0 software packages[J]. Journal of China University of Science and Technology, 2001, 31(3): 328-333.

[15]

D’Angelo P., Bottari E., Festa M. R., et al. Structural investigation of copper(II) chloride solutions using X-ray absorption spectroscopy[J]. Journal of Chemical Physics, 1997, 107(8): 2807-2812.

[16]

Marcus Y. Effect of ions on the structure of water: Structure making and breaking[J]. Chemical Reviews, 2009, 109(3): 1346-1370.

[17]

Yan B., Zhao L., Wang W., et al. Effect of freeze/thaw disposing on the water cluster structure of CuCl2 aqueous solution and the interaction between CuCl2 aqueous solution and bovine serum albumin[J]. Chinese Journal of Inorganic Chemistry, 2010, 26(3): 500-508.

[18]

Fuoss R. M. Conductance-concentration function for the paired ion model[J]. Journal of Physical Chemistry, 1978, 82(22): 2427-2440.

[19]

Kraus C. A. The ion-pair concept, its evolution and some applications[J]. Journal of Physical Chemistry, 1956, 60(2): 129 141

[20]

Sze Y. K., Irish D. E. Vibrational spectral studies of ion-ion and ion-solvent interactions. I. Zinc nitrate in water [J]. Journal of Solution Chemistry, 1978, 7(6): 395-415.

[21]

Smirnov P. R., Trostin V. N. Structure of the nearest surrounding of the Na+ ion in aqueous solutions of its salts [J]. Russian Journal of General Chemistry, 2007, 77(5): 844-850.

[22]

Gregory J. K., Clary D. C., Liu K., et al. The water dipole moment in water clusters[J]. Science, 1997, 275(5301): 814-817.

[23]

Rick S. W. Simulations of ice and liquid water over a range of temperatures using the fluctuating charge model[J]. Journal of Chemical Physics, 2001, 114(5): 2276-2283.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/