Estimates of central moments for one kind of exponential-type operators

Zhanjie Song , Zhendong Yang , Peixin Ye

Transactions of Tianjin University ›› 2011, Vol. 17 ›› Issue (2) : 85

PDF
Transactions of Tianjin University ›› 2011, Vol. 17 ›› Issue (2) : 85 DOI: 10.1007/s12209-011-1566-8
Article

Estimates of central moments for one kind of exponential-type operators

Author information +
History +
PDF

Abstract

In this paper, the explicit estimates of central moments for one kind of exponential-type operators are derived. The estimates play an essential role in studying the explicit approximation properties of this family of operators. Using the proposed method, the results of Ditzian and Totik in 1987, Guo and Qi in 2007, and Mahmudov in 2010 can be improved respectively.

Keywords

exponential-type operator / central moment / approximation property / Stirling series

Cite this article

Download citation ▾
Zhanjie Song, Zhendong Yang, Peixin Ye. Estimates of central moments for one kind of exponential-type operators. Transactions of Tianjin University, 2011, 17(2): 85 DOI:10.1007/s12209-011-1566-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ditzian Z., Totik V. Moduli of Smoothness[M]. 1987, New York: Springer-Verlag.

[2]

Abel U. The moments for the Meyer-König and Zeller operators[J]. Journal of Approximation Theory, 1995, 82(3): 352-361.

[3]

Guo S., Qi Q. The moments for Meyer-König and Zeller operators[J]. Applied Mathematics Letters, 2007, 20(7): 719-722.

[4]

Mahmudov N. The moments for q-Bernstein operators in the case 0 1 < q < [J]. Numerical Algorithms, 2010, 53(4): 439-450.

[5]

Guo S., Qi Q. Simultaneous approximation for Szász-Mirakian quasi-interpolants [J]. Czechoslovak Mathematical Journal, 2006, 56(3): 789-803.

[6]

Guo S., Qi Q., Liu G. The central approximation theorems for Baskakov-Bézier operators[J]. Journal of Approximation Theory, 2007, 147(1): 112-124.

[7]

Gupta V., Aral A. Convergence of the q analogue of Szász-Beta operators[J]. Applied Mathematics and Computation, 2010, 216(2): 374-380.

[8]

Mahmudov N. I. Approximation theorems for certain positive linear operators[J]. Applied Mathematics Letters, 2010, 23(7): 812-817.

[9]

Rempulska L., Tomczak K. Approximation by certain linear operators preserving x 2[J]. Turkish Journal of Mathematics, 2009, 33(3): 273-281.

[10]

Walczak Z. On a class of Szász-Mirakyan type operators[J]. Czechoslovak Mathematical Journal, 2008, 58(3): 705-716.

[11]

Walczak Z. The degree of approximation by certain linear positive operators[J]. Carpathian Journal of Mathematics, 2009, 25(2): 246-257.

[12]

Feller W. An Introduction to Probability Theory and Its Applications II[M]. 1966, New York: Wiley.

[13]

Chen W. Z., Zhou M. Limiting operators for some operator sequences of probabilistic type[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1997, 121(3): 547-554.

[14]

Mortici C. A new Stirling series as continued fraction[J]. Numerical Algorithms, 2011, 56(1): 17-26.

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/