Extraction and isolation of type I, III and V collagens and their SDS-PAGE analyses

Jimin Wu , Zhihong Li , Xiaoyan Yuan , Pengfei Wang , Yongqing Liu , He Wang

Transactions of Tianjin University ›› 2011, Vol. 17 ›› Issue (2) : 111

PDF
Transactions of Tianjin University ›› 2011, Vol. 17 ›› Issue (2) : 111 DOI: 10.1007/s12209-011-1543-2
Article

Extraction and isolation of type I, III and V collagens and their SDS-PAGE analyses

Author information +
History +
PDF

Abstract

Type I, III and V collagens were extracted from bovine dermis and cornea by using pepsin treatment in acetic acid solution, followed by salt precipitation and dialysis, to purify and isolate each type of collagens. The preparation process was analyzed by using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). A reducing agent, 2-mercaptoethanol, was used to remove disulfide bonds and analyze the structure of the bonds involved between α chains in some types of collagens. The use of delayed reducing methods resulted in the difference between α1(III) and α 1(I) chains in a mixture containing type I and III collagens. The structure of disulfide bonds among α chains exists potentially in type V collagen prepared from the pepsin-treatment extraction at 4 °C, which differs from type III collagen in relation to the locations of disulfide bonds. Compared with pepsin-treated collagen at 4 °C, the relative molecular weights of α1(V) and α2(V) chains treated at room temperature decrease by 4.6% and 6.0%, respectively. It is concluded that type I, III and V collagens can be prepared from bovine dermis and cornea by the use of pepsin treatment, salt precipitation and dialysis. The interchain disulfide bonds lie potentially near the edges of termini of type V collagen molecules in extracellular matrix, and a small number of interchain crosslinks exist in type V collagen.

Keywords

collagen / interchain / SDS-PAGE / preparation / structure

Cite this article

Download citation ▾
Jimin Wu, Zhihong Li, Xiaoyan Yuan, Pengfei Wang, Yongqing Liu, He Wang. Extraction and isolation of type I, III and V collagens and their SDS-PAGE analyses. Transactions of Tianjin University, 2011, 17(2): 111 DOI:10.1007/s12209-011-1543-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Biondi M., Ungaro F., Quaglia F., et al. Controlled drug delivery in tissue engineering[J]. Advanced Drug Delivery Reviews, 2008, 60(2): 229-242.

[2]

Kivirikko K. I., Myllyharju J. Prolyl 4-hydroxylases and their protein disulfide isomerase subunit[J]. Matrix Biology, 1998, 16(7): 357-368.

[3]

Kielty C. M., Hopkinson I., Grant M. E. Royce P. M., Steinmann B. The Collagen Family: Structure, Assembly and Organization in the Extracellular Matrix[M]. Connective Tissue and Its Heritable Disorders: Molecular, Genetic, and Medical Aspects, 1993, New York: Wiley-Liss Inc 103-147.

[4]

Hayashi T., Mizino K., Nakazato K. Koide H., Hayashi T. Collagen Superfamily Proteins[M]. Extracellular Matrix, 1993, Tokyo: Aichi Press 94-131.

[5]

Hayashi T., Mizuno K. Creighton T. E. Collagen[M]. Encyclopedia of Molecular Biology, 1999, London: John Wiley & Sons Inc 500-511.

[6]

Wu J. M., Miao M. S., Guan J., et al. Experiment on hemostasis for wounds with collagen sponge[J]. Biomedical Engineering and Clinical Medicine, 2002, 6(1): 11-13.

[7]

Stamov D., Grimmer M., Salchert K., et al. Heparin intercalation into reconstituted collagenI fibrils: Impact on growth kinetics and morphology[J]. Biomaterials, 2008, 29(1): 1-14.

[8]

Xu Y. Y., Wu J. M., Guan J., et al. Physicochemical and biological properties of modified collagen sponge from porcine skin[J]. Journal of Wuhan University of Technology (Materials Science Edition), 2009, 24(4): 619-626.

[9]

Nillesen S. T. M., Geutjes P. J., Wismans R., et al. Increased angiogenesis and blood vessel maturation in acellular collagen-heparin scaffolds containing both FGF2 and VEGF[J]. Biomaterials, 2007, 28(6): 1123-1131.

[10]

Nam K., Kimura T., Kishida A. Physical and biological properties of collagen-phospholipid polymer hybrid gels[J]. Biomaterials, 2007, 28(20): 3153-3162.

[11]

Mizuno K., Hayashi T. Hata R., Hattori S., Arai K. Purification and Distinction of Collagens: Type V collagen[M]. Research Methods of Extracellular Matrix. Vol I: Research Methods of Biochemistry, 1998, Tokyo: Hidejima Press 24-28.

[12]

Niyibizi C., Eyre D. R. Structural analysis of the extension peptides on matrix forms of type V collagen in fetal calf bone and skin[J]. Biochimica et Biophysica Acta, 1993, 1203(2): 304-309.

[13]

Wu J. M., Ye P., Guan J. The structural analyses of collagen sponge and its biological evaluation[J]. Bulletin of the Academy of Military Medical Sciences, 1998, 22(4): 281-285.

[14]

Imamura K., Hayashi T. Hata R., Hattori S., Arai K. Purification and Distinction of Collagens: Type VI Collagen[M]. Research Methods of Extracellular Matrix. Vol I: Research Methods of Biochemistry, 1998, Tokyo: Hidejima Press 30-33.

[15]

Brodsky B., Ramshaw J. A. M. The collagen triple-helix structure[J]. Matrix Biology, 1997, 15(8/9): 545-554.

[16]

Moradi-Améli M., Rousseau J. C., Kleman J. P., et al. Diversity in the processing events at the N-terminus of type V collagen[J]. European Journal Biochemistry, 1994, 221(3): 987-995.

[17]

Hattori S. Hata R., Hattori S., Arai K. Analysis of Collagens: Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE)[M]. Research Methods of Extracellular Matrix. Vol I: Research Methods of Biochemistry, 1998, Tokyo: Hidejima Press 58-64.

[18]

Kielty C. M., Lees M., Shuttleworth C. A., et al. Catabolism of intact type VI collagen microfibrils: Susceptibility to degradation by serine proteinases[J]. Biochemical Biophysical Research Communications, 1993, 191(3): 1230-1236.

[19]

Wu J. M., Imamura Y., Hayashi T. Extraction of type I and III collagens from bovine dermis and SDS-PAGE electrophoreses[J]. Journal of Biomedical Engineering, 2002, 19(2): s65-s66.

[20]

Doege K. J., Fessler J. H. Folding of carboxyl domain and assembly of procollagen I [J]. The Journal Biological Chemistry, 1986, 261(19): 8924-8935.

[21]

Levenberg S., Huang N. F., Lavik E., et al. Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(22): 12741-12746.

[22]

Alves C. M., Yang Y., Carnes D. L., et al. Modulating bone cells response onto starch-based biomaterials by surface plasma treatment and protein adsorption[J]. Biomaterials, 2007, 28(2): 307-315.

[23]

Jaklenec A., Wan E., Murray M. E., et al. Novel scaffolds fabricated from protein-loaded microspheres for tissue engineering[J]. Biomaterials, 2008, 29(2): 185-192.

AI Summary AI Mindmap
PDF

99

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/